Jennifer M. Nagel

Learn More
Lythrum salicaria (purple loosestrife) is a nonindigenous invasive species characterized by prolific growth and abundance in marshy and riparian habitats across North America. Given its invasive success, we hypothesized this species may require less energy and/or use energy more efficiently for biomass construction than co-occurring noninvasive plant(More)
Since its introduction to North America, Lythrum salicaria (L.) (purple loosestrife) has become invasive in marshy and riparian habitats. We compared gas-exchange responses to external CO2 partial pressure and light, as well as related leaf structural and biochemical characteristics, of L. salicaria with those of co-occurring native Asclepias syriaca(More)
Energy-use efficiency and energy assimilation, investment and allocation patterns are likely to influence plant growth responses to increasing atmospheric CO2 concentration ([CO2]). Here, we describe the influence of elevated [CO2] on energetic properties as a mechanism of growth responses in Xanthium strumarium. Individuals of X. strumarium were grown at(More)
Despite its recent expansion in eastern US forests, red maple (Acer rubrum L.) generally exhibits a low leaf photosynthetic rate, leaf mass per unit area (LMA) and leaf nitrogen concentration ([N]) relative to co-occurring oaks (Quercus spp.). To evaluate these differences from the perspective of leaf energy investment, we compared leaf construction cost(More)
  • 1