Learn More
Several G protein-coupled receptors (GPCRs), including opioid receptors deltaOR, muOR, and kappaOR, have been reported to form stable dimers or oligomers in lipid bilayers and cell membranes. This notion has been recently challenged by imaging data supporting a transient nature of GPCR association. Here we use umbrella sampling reconstructed free energies(More)
Considerable evidence has accumulated in recent years suggesting that G protein-coupled receptors (GPCRs) associate in the plasma membrane to form homo- and/or heteromers. Nevertheless, the stoichiometry, fraction and lifetime of such receptor complexes in living cells remain topics of intense debate. Motivated by experimental data suggesting differing(More)
Opioid receptors, like other members of the G protein-coupled receptor (GPCR) family, have been shown to associate to form dimers and/or oligomers at the plasma membrane. Whether this association is stable or transient is not known. Recent compelling evidence suggests that at least some GPCRs rapidly associate and dissociate. We have recently calculated(More)
The recent mu-opioid receptor (MOPr) and kappa-opioid receptor (KOPr) crystal structures have inspired hypotheses of physiologically relevant dimerization contacts, specifically: a closely packed interface involving transmembrane (TM) helices TM5 and TM6, and a less compact interface, involving TM1, TM2, and helix 8 (H8). While the former was only found in(More)
Spatial organization of G-protein coupled receptors (GPCRs) into dimers and higher order oligomers has been demonstrated in vitro and in vivo. The pharmacological readout was shown to depend on the specific interfaces, but why particular regions of the GPCR structure are involved, and how ligand-determined states change them remains unknown. Here we show(More)
Prolonged morphine treatment induces extensive desensitization of the μ-opioid receptor (μOR) which is the G-protein-coupled receptor that primarily mediates the cellular response to morphine. To date, the molecular mechanism underlying this process is unknown. Here, we have used live cell fluorescence imaging to investigate whether prolonged morphine(More)
Substantial evidence in support of the formation of opioid receptor (OR) di-/oligomers suggests previously unknown mechanisms used by these proteins to exert their biological functions. In an attempt to guide experimental assessment of the identity of the minimal signaling unit for ORs, we conducted extensive coarse-grained (CG) molecular dynamics (MD)(More)
The majority of biological processes mediated by G Protein-Coupled Receptors (GPCRs) take place on timescales that are not conveniently accessible to standard molecular dynamics (MD) approaches, notwithstanding the current availability of specialized parallel computer architectures, and efficient simulation algorithms. Enhanced MD-based methods have started(More)
Ion channel-forming peptides enable us to study the conformational dynamics of a transmembrane helix as a function of sequence and environment. Molecular dynamics simulations are used to study the conformation and dynamics of three 22-residue peptides derived from the second transmembrane domain of the glycine receptor (NK4-M2GlyR-p22). Simulations are(More)