Jennifer Louten

Learn More
T(H)17 cells are the newest member of the T(H) cell family and are characterized by their ability to produce specific cytokines such as IL-17, IL-22, IL-17F, and CCL20. In this review, conditions for the differentiation of T(H)17 cells are defined in both murine and human systems, with discussion of T(H)17-specific cytokines and transcription factors.(More)
Pulmonary arterial remodeling characterized by increased vascular smooth muscle density is a common lesion seen in pulmonary arterial hypertension (PAH), a deadly condition. Clinical correlation studies have suggested an immune pathogenesis of pulmonary arterial remodeling, but experimental proof has been lacking. We show that immunization and prolonged(More)
BACKGROUND Biomarkers facilitate early detection of disease and measurement of therapeutic efficacy, both at clinical and experimental levels. Recent advances in analytics and disease models allow comprehensive screening for biomarkers in complex diseases, such as asthma, that was previously not feasible. OBJECTIVE Using murine and nonhuman primate (NHP)(More)
IL-33 is an IL-1-related cytokine which has been implicated in T(h)2-associated biology and allergic diseases in humans and mice. IL-33 stimulates T(h)2 cells, mast cells, eosinophils, basophils, iNKT cells and circulating CD34(+) stem cells to proliferate and produce pro-allergic cytokines such as IL-5 and IL-13. IL-33 mediates its cytokine effects through(More)
MicroRNAs (miRNAs) are short sequences of noncoding single-stranded RNAs that exhibit inhibitory effects on complementary target mRNAs. Recently, it has been discovered that certain viruses express their own miRNAs, while other viruses activate the transcription of cellular miRNAs for their own benefit. This review summarizes the viral and/or cellular(More)
BACKGROUND Interleukin (IL)-19 has been reported to enhance chronic inflammatory diseases such as asthma but the in vivo mechanism is incompletely understood. Because IL-19 is produced by and regulates cells of the monocyte lineage, our studies focused on in vivo responses of CD11c positive (CD11c+) alveolar macrophages and lung dendritic cells. (More)
  • 1