Jennifer L Weisman

Learn More
The need to discover and develop new antimalarial therapeutics is overwhelming. The annual mortality attributed to malaria, currently approximately 2.5 million, is increasing due primarily to widespread resistance to currently used drugs. One strategy to identify new treatment alternatives for malaria is to examine libraries of diverse compounds for the(More)
A simple two-step synthesis method was used to make 51 B-ring-substituted 4-hydroxyquinolines allowing analysis of the effect of ring substitutions on inhibition of growth of chloroquine sensitive and resistant strains of Plasmodium falciparum, the dominant cause of malaria morbidity. Substituted quinoline rings other than the 7-chloroquinoline ring found(More)
A parallel synthetic strategy to the 9-aminoacridine scaffold of the classical anti-malarial drug quinacrine (2) is presented. The method features a new route to 9-chloroacridines that utilizes triflates of salicylic acid derivatives, which are commercially available in a variety of substitution patterns. The route allows ready variation of the two(More)
Parasitic diseases are of enormous public health significance in developing countries-a situation compounded by the toxicity of and resistance to many current chemotherapeutics. We investigated a focused library of 18 structurally diverse bis-acridine compounds for in vitro bioactivity against seven protozoan and one helminth parasite species and compared(More)
  • 1