Jennifer L Szczytkowski

Learn More
RATIONALE The administration of heroin has been shown to inhibit the induction of nitric oxide, a molecule known to play a critical role in immune function. Previous research has shown that this alteration can be conditioned to environmental stimuli that have been associated with drug administration. However, it remains unknown whether the conditioned(More)
This study investigates the role of basolateral amygdala (BLA) dopamine in heroin-induced conditioned immunomodulation. Animals underwent conditioning in which heroin administration was repeatedly paired with placement into a conditioning chamber. Six days after the final conditioning session animals were returned to the chamber and received intra-BLA(More)
Heroin administration alters the induction of nitric oxide, a molecule known to play a critical role in immune function. Previous research has shown that these alterations can be conditioned to environmental stimuli that have been associated with drug administration. Little is known about the brain areas that mediate these effects; however, the basolateral(More)
The present investigations sought to determine whether the ventral tegmental area (VTA), basolateral amygdala (BLA), and nucleus accumbens shell (NAC) comprise a circuitry that mediates heroin-induced conditioned immunomodulation. Rats were given conditioning trials in which they received an injection of heroin upon placement into a distinctive environment.(More)
Opioid-associated environmental stimuli elicit robust immune-altering effects via stimulation of a neural circuitry that includes the basolateral amygdala and nucleus accumbens. These brain regions are known to have both direct and indirect connections with the hippocampus. Thus, the present study evaluated whether the dorsal hippocampus (DH), and more(More)
Dopamine receptor stimulation is critical for heroin-conditioned immunomodulation; however, it is unclear whether the ventral tegmental area (VTA) contributes to this phenomenon. Hence, rats received repeated pairings of heroin with placement into a distinct environmental context. At test, they were re-exposed to the previously heroin-paired environment(More)
Chemotherapeutic drugs may not only kill rapidly dividing cells but may also alter the extracellular environment of surviving cells. We investigated the possibility that cyclophosphamide might alter the noradrenergic environment of the spleen. Male BALB/cByJ mice were administered a single injection of cyclophosphamide (0, 15, 50, or 100 mg/kg). Seventy-two(More)
  • 1