Learn More
Proteins that contain disulphide bonds are often slow to fold in vitro because the oxidation and correct pairing of the cysteine residues is rate limiting. The folding of such proteins is greatly accelerated in Escherichia coli by DsbA, but the mechanism of this rate enhancement is not well understood. Here we report the crystal structure of oxidized DsbA(More)
Munc18-1 and Syntaxin1 are essential proteins for SNARE-mediated neurotransmission. Munc18-1 participates in synaptic vesicle fusion via dual roles: as a docking/chaperone protein by binding closed Syntaxin1, and as a fusion protein that binds SNARE complexes in a Syntaxin1 N-peptide dependent manner. The two roles are associated with a closed-open(More)
Sulfonation catalyzed by sulfotransferase enzymes plays an important role in chemical defense mechanisms against various xenobiotics but also bioactivates carcinogens. A major human sulfotransferase, SULT1A1, metabolizes and/or bioactivates many endogenous compounds and is implicated in a range of cancers because of its ability to modify diverse promutagen(More)
The S-adenosylmethionine-dependent methyltransferase enzymes share little sequence identity, but incorporate a highly conserved structural fold. Surprisingly, residues that bind the common cofactor are poorly conserved, although the binding site is localised to the same region of the fold. The substrate-binding region of the fold varies enormously. Over the(More)
Sec1/Munc18 proteins (SM proteins) bind to soluble NSF attachment protein receptors (SNAREs) and play an essential role in membrane fusion. Divergent modes of regulation have been proposed for different SM proteins indicating that they can either promote or inhibit SNARE assembly. This is in part because of discrete modes of binding that have been described(More)
Sulfonation is an important reaction in the metabolism of numerous xenobiotics, drugs, and endogenous compounds. A supergene family of enzymes called sulfotransferases (SULTs) catalyze this reaction. In most cases, the addition of a sulfonate moiety to a compound increases its water solubility and decreases its biological activity. However, many of these(More)
Sulfonation, like phosphorylation, can modify the activity of a variety of biological molecules. The sulfotransferase enzymes sulfonate neurotransmitters, drugs, steroid hormones, dietary carcinogens and proteins. SULT1A3 specifically sulfonates catecholamines such as dopamine, adrenaline and noradrenaline. The crystal structure of SULT1A3 with a sulfate(More)
OBJECTIVES To determine whether fragmented sleep in nursing home patients would improve with increased exposure to bright light. DESIGN Randomized controlled trial. SETTING Two San Diego-area nursing homes. PARTICIPANTS Seventy-seven (58 women, 19 men) nursing home residents participated. Mean age +/- standard deviation was 85.7 +/- 7.3 (range 60-100)(More)
When nerve cells communicate, vesicles from one neuron fuse with the presynaptic membrane releasing chemicals that signal to the next. Similarly, when insulin binds its receptor on adipocytes or muscle, glucose transporter-4 vesicles fuse with the cell membrane, allowing glucose to be imported. These essential processes require the interaction of SNARE(More)
Membrane fusion is essential for cellular transport in eukaryotes. Abnormalities contribute to a wide range of diseases including diabetes and neurological disorders. A key regulator of SNARE-mediated membrane fusion is the Sec1/Munc18 (SM) protein family. Universal structural features of SM proteins have been identified that affect the way these interact(More)