Learn More
A major cause of the cerebral cortex expansion that occurred during evolution is the increase in subventricular zone (SVZ) progenitors. We found that progenitors in the outer SVZ (OSVZ) of developing human neocortex retain features of radial glia, in contrast to rodent SVZ progenitors, which have limited proliferation potential. Although delaminating from(More)
Relative brain size differs markedly between species. This variation might ultimately result from differences in the cell biology of neural progenitors, which might underlie their different proliferative potential. On the basis of the cell-biological properties of neural progenitors of animals of varying brain size and complexity (namely, Drosophila(More)
Encephalization, and its relationship to potential selective forces, have been a focus of many studies of primate adaptation. It has been argued that gut size may constrain brain mass because these two types of "expensive tissue" (among others) compete in their metabolic requirements (Aiello and Wheeler [1995] Curr. Anthropol. 36:199-221). Following from(More)
Variation in jaw size during evolution has been crucial for the adaptive radiation of vertebrates, yet variation in jaw size during development is often associated with disease. To test the hypothesis that early developmental events regulating neural crest (NC) progenitors contribute to species-specific differences in size, we investigated mechanisms(More)
Modularity is a key mechanism bridging development and evolution and is fundamental to evolvability. Herein, we investigate modularity of the Vertebrate jaw with the aim of understanding mechanisms of its morphological evolution. Conservation of the basic structural bauplan of Vertebrate jaws led to a Hinge and Caps model, in which polarity in the(More)
The Alx gene family is implicated in craniofacial development and comprises two to four homeobox genes in each vertebrate genome analyzed. Using phylogenetics and comparative genomics, we show that the common ancestor of jawed vertebrates had three Alx genes descendent from the two-round genome duplications (Alx1, Alx3, Alx4), compared with a single(More)
Normal patterning and morphogenesis of the complex skeletal structures of the skull requires an exquisite, reciprocal cross-talk between the embryonic cephalic epithelia and mesenchyme. The mesenchyme associated with the jaws and the optic and olfactory capsules is derived from a Hox-negative cranial neural crest (CNC) population that acts much as an(More)
The evolutionarily conserved miR-302 family of microRNAs is expressed during early mammalian embryonic development. Here, we report that deletion of miR-302a-d in mice results in a fully penetrant late embryonic lethal phenotype. Knockout embryos have an anterior neural tube closure defect associated with a thickened neuroepithelium. The neuroepithelium(More)
Phylogenetic analyses require evolutionarily independent characters, but there is no consensus, nor has there been a clear methodology presented on how to define character independence in a phylogenetic context, particularly within a complex morphological structure such as the skull. Following from studies of craniofacial development, we hypothesize that(More)
The rapid growth and increasing popularity of smartphone technology is putting sophisticated data-collection tools in the hands of more and more citizens. This has exciting implications for the expanding field of citizen science. With smartphone-based applications (apps), it is now increasingly practical to remotely acquire high quality citizen-submitted(More)