Learn More
BACKGROUND Neonates with hypoxic-ischemic encephalopathy (HIE) are at risk of cerebral blood flow dysregulation. Our objective was to describe the relationship between autoregulation and neurologic injury in HIE. METHODS Neonates with HIE had autoregulation monitoring with the hemoglobin volume index (HVx) during therapeutic hypothermia, rewarming, and(More)
Laparoscopic colectomy is now widely applied to cases of malignancy, supported by early data from several large randomized controlled trials. Long-term follow-up is now available from those trials, supporting equivalency of cancer-free and overall survival for open and laparoscopic resections. This promising data has inspired further exploration of other(More)
BACKGROUND AND PURPOSE Assessment of autoregulation in the time domain is a promising monitoring method for actively optimizating cerebral perfusion pressure (CPP) in critically ill patients. The ability to detect loss of autoregulatory vasoreactivity to spontaneous fluctuations in CPP was tested with a new time-domain method that used near-infrared(More)
Despite recent advances in neonatal care and monitoring, asphyxia globally accounts for 23% of the 4 million annual deaths of newborns, and leads to hypoxic-ischemic encephalopathy (HIE). Occurring in five of 1000 live-born infants globally and even more in developing countries, HIE is a serious problem that causes death in 25%-50% of affected neonates and(More)
Drosophila melanogaster postfeeding larvae show food-averse migration toward food-free habitats before metamorphosis. This developmental switching from food attraction to aversion is regulated by a neuropeptide Y (NPY)-related brain signaling peptide. We used the fly larva model to delineate the neurobiological basis of age-restricted response to(More)
Bacteria in the genus Chlamydia are major human pathogens that cause an intracellular infection. A chlamydial protease, CPAF, has been proposed as an important virulence factor that cleaves or degrades at least 16 host proteins, thereby altering multiple cellular processes. We examined 11 published CPAF substrates and found that there was no detectable(More)
Biomechanics plays a pivotal role in articular cartilage development, pathophysiology, and regeneration. During embryogenesis and cartilage maturation, mechanical stimuli promote chondrogenesis and limb formation. Mechanical loading, which has been characterized using computer modeling and in vivo studies, is crucial for maintaining the phenotype of(More)
Lymphocyte activation results in a rapid reorganization of the cytoskeletal protein spectrin. Immediately following an activation signal, there is fragmentation of a spectrin-rich cytoplasmic structure and subsequent translocation of the fragments to defined areas of the plasma membrane in both antigen-specific T cell hybridomas and lymph node T cells.(More)
BACKGROUND Patient rewarming after hypothermic cardiopulmonary bypass (CPB) has been linked to brain injury after cardiac surgery. In this study, we evaluated whether cooling and then rewarming of body temperature during CPB in adult patients is associated with alterations in cerebral blood flow (CBF)-blood pressure autoregulation. METHODS One hundred(More)
The limited regenerative capacity of articular cartilage and deficiencies of current treatments have motivated the investigation of new repair technologies. In vitro cartilage generation using primary cell sources is limited by cell availability and expansion potential. Pluripotent stem cells possess the capacity for chondrocytic differentiation and(More)