Jennifer J. Bushey

Learn More
BACKGROUND Chronic granulomatous disease (CGD), an inherited disorder of the NADPH oxidase in which phagocytes are defective in generating superoxide anion and downstream reactive oxidant intermediates (ROIs), is characterized by recurrent bacterial and fungal infections and by excessive inflammation (e.g., inflammatory bowel disease). The mechanisms by(More)
Evidence suggests that adipose tissue-derived adipokines induce mild inflammation and may play a role in insulin resistance associated with diabetes. The present study was designed to examine a series of adipokines and markers of inflammation in dogs before and after a successful weight loss. The study included fasting serum samples from twenty-five dogs(More)
Response surface methods for the study of multiple-agent interaction allow one to model all of the information present in full concentration-effect data sets and to visualize and quantify local regions of synergy, additivity, and antagonism. In randomized wells of 96-well plates, Aspergillus fumigatus was exposed to various combinations of amphotericin B,(More)
OBJECTIVE To assess expression pattern and subcellular compartmentalization of 5-lipoxygenase in cutaneous, UV radiation-induced, and oral squamous cell carcinomas (SCCs) in cats and determine the effects of cyclooxygenase or 5-lipoxygenase inhibition on proliferation or apoptosis in a feline oral squamous cell carcinoma (SCCF1) cell line. SAMPLE 60(More)
Canine osteosarcoma is an insidious disease with few effective treatment modalities; therefore, use of pharmacologic intervention to improve mortality or morbidity is constantly sought. The use of cyclooxygenase enzyme inhibitors has been an area of interest with limited efficacy based on retrospective examination of tumor expression and in vivo cell(More)
The 5-lipoxygenase (5-LOX) inhibitor tepoxalin has been shown to slow canine osteosarcoma (OSA) tumour xenografts growth, yet the mechanisms are poorly elucidated. Further examination of tepoxalin in canine OSA cell lines shows that tepoxalin treated cells undergo apoptosis through caspase-3 activation and annexin staining. Interestingly, apoptosis is(More)
  • 1