Learn More
Many bacterial pathogens of plants and animals use a type III secretion system to deliver diverse virulence-associated 'effector' proteins into the host cell. The mechanisms by which these effectors act are mostly unknown; however, they often promote disease by suppressing host immunity. One type III effector, AvrPtoB, expressed by the plant pathogen(More)
Reprogramming of somatic cell nuclei to yield induced pluripotent stem (iPS) cells makes possible derivation of patient-specific stem cells for regenerative medicine. However, iPS cell generation is asynchronous and slow (2-3 weeks), the frequency is low (<0.1%), and DNA demethylation constitutes a bottleneck. To determine regulatory mechanisms involved in(More)
Mechanistic insights into the reprogramming of fibroblasts to induced pluripotent stem cells (iPSCs) are limited, particularly for early acting molecular regulators. Here we use an acute loss of function approach to demonstrate that activation-induced deaminase (AID) activity is necessary for the initiation of reprogramming to iPSCs. While AID is well known(More)
Myeloma bone disease (MBD) is a devastating complication of multiple myeloma (MM). More than 80% of MM patients suffer from destructive bony lesions, leading to pain, fractures, mobility issues, and neurological deficits. MBD is not only a main cause of disability and morbidity in MM patients but also increases the cost of management. Bone destruction and(More)
Molecular insights into somatic cell reprogramming to induced pluripotent stem cells (iPS) would aid regenerative medicine, but are difficult to elucidate in iPS because of their heterogeneity, as relatively few cells undergo reprogramming (0.1-1%; refs , ). To identify early acting regulators, we capitalized on non-dividing heterokaryons (mouse embryonic(More)
There is a need for new molecular-guided contrast agents to enhance surgical procedures such as tumor resection that require a high degree of precision. Cysteine cathepsins are highly up-regulated in a wide variety of cancers, both in tumor cells and in the tumor-supporting cells of the surrounding stroma. Therefore, tools that can be used to dynamically(More)
Metastases are the main cause of cancer deaths, but the mechanisms underlying metastatic progression remain poorly understood. We isolated pure populations of cancer cells from primary tumors and metastases from a genetically engineered mouse model of human small cell lung cancer (SCLC) to investigate the mechanisms that drive the metastatic spread of this(More)
Molecular insights into somatic cell reprogramming to iPS would aid regenerative medicine, but are difficult to elucidate in iPS because of their heterogeneity, as relatively few undergo reprogramming (0.1-1%) 1,2. To identify early acting regulators, we capitalized on non-dividing heterokaryons (mouse embryonic stem cells (mES) fused to human fibroblasts(More)
Vinyl chloride (VCM) induced angiosarcoma of the liver (ASL) is a rare vascular tumor which might be associated with a wide range of disease states. The possibility that this tumor might be a signal lesion is supported by mortality studies suggesting that cancers of the digestive, respiratory, neurological and lymphatic systems have occurred more often than(More)
  • 1