Jennifer Hollister-Lock

Learn More
The transplantation of glucose-responsive, insulin-producing cells offers the potential for restoring glycemic control in individuals with diabetes. Pancreas transplantation and the infusion of cadaveric islets are currently implemented clinically, but these approaches are limited by the adverse effects of immunosuppressive therapy over the lifetime of the(More)
The efficacy of implanted biomedical devices is often compromised by host recognition and subsequent foreign body responses. Here, we demonstrate the role of the geometry of implanted materials on their biocompatibility in vivo. In rodent and non-human primate animal models, implanted spheres 1.5 mm and above in diameter across a broad spectrum of(More)
Neonatal β cells do not secrete glucose-responsive insulin and are considered immature. We previously showed the transcription factor MAFA is key for the functional maturation of β cells, but the physiological regulators of this process are unknown. Here we show that postnatal rat β cells express thyroid hormone (TH) receptor isoforms and deiodinases in an(More)
BACKGROUND Vascular endothelial growth factor (VEGF) and its two receptor tyrosine kinases, Flk-1/KDR and Flt-1, may play an important role in mediating the revascularization of transplanted pancreatic islets. METHODS Using semiquantitative multiplex reverse-transcribed polymerase chain reaction we determined the gene expression of VEGF and its receptors(More)
Immuno-isolation of islets has the potential to enable the replacement of pancreatic function in diabetic patients. However, host response to the encapsulated islets frequently leads to fibrotic overgrowth with subsequent impairment of the transplanted grafts. Here, we identified and incorporated anti-inflammatory agents into islet-containing microcapsules(More)
Islets microencapsulation holds great promise to treat type 1 diabetes. Currently used alginate microcapsules often have islets protruding outside capsules, leading to inadequate immuno-protection. A novel design of microcapsules with core-shell structures using a two-fluid co-axial electro-jetting is reported. Improved encapsulation and diabetes correction(More)
Neonatal porcine pancreas has considerable capacity for growth and differentiation, making it an attractive potential source of islet tissue for xenotransplantation. Pancreases from 1-3-day-old newborn pigs were digested with collagenase and cultured for 8 days. The resulting cellular aggregates are called porcine neonatal pancreatic cell clusters (NPCCs).(More)
Islets are composed mostly of beta-cells, and therefore stem cell research has concentrated on generating purified beta-cells, neglecting the other endocrine cell types in the islet. We investigated the presence of endocrine non-beta-cells after islet transplantation. In addition, we studied whether the transplantation of pure beta-cells, in volumes similar(More)
BACKGROUND A major problem facing islet transplantation is immune destruction of grafts by transplant rejection and autoimmunity. Some success in prolonging graft rejection has been obtained by transducing islets prior to transplantation with adenoviral (Ad) vectors containing CTLA4-Ig and TGFbeta. The purpose of this study was to see if lentiviral (LV)(More)
Diabetes is a pathological condition characterized by relative insulin deficiency, persistent hyperglycemia, and, consequently, diffuse micro- and macrovascular disease. One therapeutic strategy is to amplify insulin-secretion capacity by increasing the number of the insulin-producing β cells without triggering a generalized proliferative response. Here, we(More)