Learn More
PURPOSE We aim to understand how mechanical causation influences retinal detachment and reattachment processes. In particular, myopes suffer retinal detachment more frequently than emmetropes, and following a retinal detachment, scleral buckling promotes retinal reattachment. We test the hypothesis that stresses arising from saccadic eye rotations are(More)
In this paper, we develop a mathematical model of blood circulation in the liver lobule. We aim to find the pressure and flux distributions within a liver lobule. We also investigate the effects of changes in pressure that occur following a resection of part of the liver, which often leads to high pressure in the portal vein. The liver can be divided into(More)
Saccadic eye rotations induce a flow in the vitreous humor of the eye. Any such flow is likely to have a significant influence on the dispersion of drugs injected into the vitreous chamber. The shape of this chamber deviates from a perfect sphere by up to 10-20% of the radius, which is predominantly due to an indentation caused by the lens. In this paper we(More)
Determining locations of focal arrhythmia sources and quantifying myocardial conduction velocity (CV) are two major challenges in clinical catheter ablation cases. CV, wave-front direction and focal source location can be estimated from multipolar catheter data, but currently available methods are time-consuming, limited to specific electrode(More)
We present a mathematical model of blood and interstitial flow in the liver. The liver is treated as a lattice of hexagonal 'classic' lobules, which are assumed to be long enough that end effects may be neglected and a two-dimensional problem considered. Since sinusoids and lymphatic vessels are numerous and small compared to the lobule, we use a(More)
Measurements of cardiac conduction velocity provide valuable functional and structural insight into the initiation and perpetuation of cardiac arrhythmias, in both a clinical and laboratory context. The interpretation of activation wavefronts and their propagation can identify mechanistic properties of a broad range of electrophysiological pathologies.(More)
Assessing the location and stability of electrical rotors can help target ablation therapy for atrial fibrillation. Rotor cores can be tracked by identifying singularities in the phase of spatially distributed electrical recordings. This is routinely applied to unipolar electrogram and action potential data, but not to bipolar electrogram data, which(More)
Electro-anatomic mapping and medical imaging systems, used during clinical procedures for treatment of atrial arrhythmias, frequently record and display measurements on an anatomical surface of the left atrium. As such, obtaining a complete picture of activation necessitates simultaneous views from multiple angles. In addition, post-processing of(More)
Blockages of the ureter, e.g. due to calculi (kidney stones), can result in an increase in renal pelvic pressure. This may be relieved by inserting a stent (essentially a permeable hollow tube). However, a number of complications are associated with stent use. Stents can result in reflux (backflow of urine along the ureter), which will promote recurrent(More)
Vesicorenal reflux is a major side effect associated with ureteric stent placement. In a stented upper urinary tract when the bladder pressure rises, such as during bladder spasms (due to irritation caused by the stent) or voiding of the bladder, it drives urine reflux up the ureter, which, in turn, may be a contributory factor for infections in the renal(More)