Jennifer H. Gutzman

Learn More
Hedgehog signaling is critical for metazoan development and requires cilia for pathway activity. The gene iguana was discovered in zebrafish as required for Hedgehog signaling, and encodes a novel Zn finger protein. Planarians are flatworms with robust regenerative capacities and utilize epidermal cilia for locomotion. RNA interference of Smed-iguana in the(More)
Proper brain ventricle formation during embryonic brain development is required for normal brain function. Brain ventricles are the highly conserved cavities within the brain that are filled with cerebrospinal fluid. In zebrafish, after neural tube formation, the neuroepithelium undergoes a series of constrictions and folds while it fills with fluid(More)
We demonstrate that in the zebrafish hindbrain, cell shape, rhombomere morphogenesis and, unexpectedly, brain ventricle lumen expansion depend on the contractile state of the neuroepithelium. The hindbrain neural tube opens in a specific sequence, with initial separation along the midline at rhombomere boundaries, subsequent openings within rhombomeres and(More)
Prolactin (PRL) and estrogen act synergistically to increase mammary gland growth, development, and differentiation. Based on their roles in the normal gland, these hormones have been studied to determine their interactions in the development and progression of breast cancer. However, most studies have evaluated only endocrine PRL and did not take into(More)
The diverse populations of microtubule polymers in cells are functionally distinguished by different posttranslational modifications, including polyglutamylation. Polyglutamylation is enriched on subsets of microtubules including those found in the centrioles, mitotic spindle, and cilia. However, whether this modification alters intrinsic microtubule(More)
Despite the important roles of both prolactin (PRL) and 17beta-estradiol (E2) in normal mammary development as well as in breast cancer, and coexpression of the estrogen receptor (ER) and PRL receptor in many mammary tumors, the interactions between PRL and E2 in breast cancer have not been well studied. The activating protein 1 (AP-1) transcription factor,(More)
The mechanisms by which the vertebrate brain achieves its three-dimensional structure are clearly complex, requiring the functions of many genes. Using the zebrafish as a model, we have begun to define genes required for brain morphogenesis, including brain ventricle formation, by studying 16 mutants previously identified as having embryonic brain(More)
During brain morphogenesis, the neuroepithelium must fold in specific regions to delineate functional units, and give rise to conserved embryonic brain shape. Individual cell shape changes are the basis for the morphogenetic events that occur during whole tissue shaping. We used the zebrafish to study the molecular mechanisms that regulate the first fold in(More)
One of the first morphogenetic events in the vertebrate brain is the formation of the highly conserved midbrain-hindbrain boundary (MHB). Specific cell shape changes occur at the point of deepest constriction of the MHB, the midbrain-hindbrain boundary constriction (MHBC), and are critical for proper MHB formation. These cell shape changes are controlled by(More)
The importance of prolactin (PRL) in physiological proliferation and differentiation of the mammary gland, together with high levels of PRL receptors in breast tumors, the association of circulating PRL with incidence of breast cancer, and the recognition of locally produced PRL, point to the need for greater understanding of PRL actions in mammary disease.(More)