Jennifer E Phillips-Cremins

Learn More
Understanding the topological configurations of chromatin may reveal valuable insights into how the genome and epigenome act in concert to control cell fate during development. Here, we generate high-resolution architecture maps across seven genomic loci in embryonic stem cells and neural progenitor cells. We observe a hierarchy of 3D interactions that(More)
A growing body of evidence suggests that insulators have a primary role in orchestrating the topological arrangement of higher-order chromatin architecture. Insulator-mediated long-range interactions can influence the epigenetic status of the genome and, in certain contexts, may have important effects on gene expression. Here we discuss higher-order(More)
Genomes are folded into sophisticated configurations that both shape, and are shaped by, a diverse range of nuclear functions. High-throughput variations of Chromosome-Conformation-Capture-based technologies now enable analysis of architecture at unprecedented resolution and scale. Here I discuss the complex structure-function relationship of the mammalian(More)
Pluripotent genomes are folded in a topological hierarchy that reorganizes during differentiation. The extent to which chromatin architecture is reconfigured during somatic cell reprogramming is poorly understood. Here we integrate fine-resolution architecture maps with epigenetic marks and gene expression in embryonic stem cells (ESCs), neural progenitor(More)
The chromatin interaction assays 5C and HiC have advanced our understanding of genomic spatial organization, but analysis approaches for these data are limited by usability and flexibility. The HiFive tool suite provides efficient data handling and a variety of normalization approaches for easy, fast analysis and method comparison. Integration of MPI-based(More)
While sequencing-based proximity assays have established many megabase-scale features of chromosome organization, experimental noise and biases have left finer-scale organization poorly understood. We developed HiFive, an empirically-driven probabilistic modeling approach for normalizing and analyzing HiC and 5C data. HiFive allows reconstruction of(More)
Bromodomain and extraterminal motif (BET) proteins are pharmacologic targets for the treatment of diverse diseases, yet the roles of individual BET family members remain unclear. We find that BRD2, but not BRD4, co-localizes with the architectural/insulator protein CCCTC-binding factor (CTCF) genome-wide. CTCF recruits BRD2 to co-bound sites whereas BRD2 is(More)
CTCF is an architectural protein with a critical role in connecting higher-order chromatin folding in pluripotent stem cells. Recent reports have suggested that CTCF binding is more dynamic during development than previously appreciated. Here, we set out to understand the extent to which shifts in genome-wide CTCF occupancy contribute to the 3D(More)
Mammalian genomes are folded into unique topological structures that undergo precise spatiotemporal restructuring during healthy development. Here, we highlight recent advances in our understanding of how the genome folds inside the 3D nucleus and how these folding patterns are miswired during the onset and progression of mammalian disease states. We(More)