Jennifer E. Michaels

Learn More
Diffuse ultrasonic waves for structural health monitoring offer the advantages of simplicity of signal generation and reception, sensitivity to damage, and large area coverage; however, there are the serious disadvantages of no accepted methodology for analyzing the complex recorded signals and sensitivity to environmental changes such as temperature and(More)
Permanently attached piezoelectric sensors arranged in a spatially distributed array are under consideration for structural health monitoring systems incorporating active ultrasonic methods. Most damage detection and localization methods that have been proposed are based upon comparing monitored signals to baselines recorded from the structure prior to(More)
Permanently mounted ultrasonic transducers have the potential to interrogate large areas of a structure, and thus be effective global sensors for structural health monitoring. Recorded signals, although very sensitive to damage, are long, complex, and difficult to interpret compared to pulse echo and through transmission signals customary for nondestructive(More)
Ultrasonic guided wave imaging with a sparse, or spatially distributed, array can detect and localize damage over large areas. Conventional delay-and-sum images from such an array typically have a relatively high noise floor, however, and contain artifacts that often cannot be discriminated from damage. Considered here is minimum variance distortionless(More)
Full wavefield measurements obtained with either an air-coupled transducer mounted on a scanning stage or a scanning laser vibrometer can be combined with effective signal and imaging processing algorithms to support characterization of guided waves as well as detection, localization and quantification of structural damage. These wavefield images contain a(More)
The application of temperature compensation strategies is important when using a guided wave structural health monitoring system. It has been shown by different authors that the influence of changing environmental and operational conditions, especially temperature, limits performance. This paper quantitatively describes two different methods to compensate(More)
Attached ultrasonic sensors can detect changes caused by crack initiation and growth if the wave path is directed through the area of critical crack formation. Dynamics of cracks opening and closing under load cause nonlinear modulation of received ultrasonic signals, enabling small cracks to be detected by stationary sensors. A methodology is presented(More)
A number of tomographic and phased-array methods have been proposed for generating two dimensional images of plate-like structures using sparse arrays of spatially distributed ultrasonic transducers. The phased array differential approach is considered here whereby pulse echo and through transmission signals are recorded before and after localized damaged(More)
Matching pursuit has typically been applied to ultrasonic signal analysis for the purpose of identifying or estimating discrete echoes. In this paper, a specific numerical implementation of matching pursuit designed for ultrasonic signal decomposition is proposed, consisting of the selection of a coarse set of basis functions, the search method for finding(More)