Jennifer B. Delproposto

Learn More
OBJECTIVE To establish the mechanism of the phenotypic switch of adipose tissue macrophages (ATMs) from an alternatively activated (M2a) to a classically activated (M1) phenotype with obesity. RESEARCH DESIGN AND METHODS ATMs from lean and obese (high-fat diet-fed) C57Bl/6 mice were analyzed by a combination of flow cytometry, immunofluorescence, and(More)
Obesity is associated with chronic low-grade inflammation that negatively impacts insulin sensitivity. Here, we show that high-fat diet can increase NF-kappaB activation in mice, which leads to a sustained elevation in level of IkappaB kinase epsilon (IKKepsilon) in liver, adipocytes, and adipose tissue macrophages. IKKepsilon knockout mice are protected(More)
Adipose tissue macrophages (ATMs) play a critical role in obesity-induced inflammation and insulin resistance. Distinct subtypes of ATMs have been identified that differentially express macrophage galactose-type C-type lectin 1 (MGL1/CD301), a marker of alternatively activated macrophages. To evaluate if MGL1 is required for the anti-inflammatory function(More)
Age-related adiposity has been linked to chronic inflammatory diseases in late life. To date, the studies on adipose tissue leukocytes and aging have not taken into account the heterogeneity of adipose tissue macrophages (ATMs), nor have they examined how age impacts other leukocytes such as T cells in fat. Therefore, we have performed a detailed(More)
Mechanisms underlying socioeconomic disparities in school readiness and health outcomes, particularly obesity, among preschool-aged children are complex and poorly understood. Obesity can induce changes in proteins in the circulation that contribute to the negative impact of obesity on health; such changes may relate to cognitive and emotion regulation(More)
  • 1