Jennifer Annoni

Learn More
Wind turbines are typically operated to maximize their own performance without considering the impact of wake effects on nearby turbines. There is the potential to increase total power and reduce structural loads by properly coordinating the individual turbines in a wind farm. The effective design and analysis of such coordinated controllers requires(More)
Wind turbines in a wind farm are operated individually to maximize their own power regardless of the impact of aerodynamic interactions on neighboring turbines. There is the potential to increase power and reduce overall structural loads by properly coordinating the turbines. To perform control design and analysis, a model needs to be of low computational(More)
Wind turbines in a wind farm operate individually to maximize their own power regardless of the impact of aerodynamic interactions on neighboring turbines. There is the potential to increase power and reduce overall structural loads by properly coordinating turbines. To perform control design and analysis, a model needs to be of low computational cost, but(More)
Wind turbines are often sited together in wind farms as it is economically advantageous. However, the wake inevitably created by every turbine will lead to a time-varying interaction between the individual turbines. Common practice in industry has been to control turbines individually and ignore this interaction while optimizing the power and loads of the(More)
Wind turbines in a wind farm are operated individually to maximize their own power regardless of the impact of aerodynamic interactions on neighboring turbines. There is the potential to increase power and reduce overall structural loads by properly coordinating the turbines. To perform control design and analysis, a model needs to be of low computational(More)
Individual wind turbines in a wind farm typically operate to maximize their performance with no consideration of the impact of wake effects on downstream turbines. There is potential to increase power and reduce structural loads within a wind farm by properly coordinating the turbines. To effectively design and analyze coordinated wind turbine controllers(More)
The objective of this paper is to construct a low-order model of a wind farm that can be used for control design and analysis. There is a potential to use wind farm control to increase power and reduce overall structural loads by properly coordinating the turbines in a wind farm. To perform control design and analysis, a model of the wind farm needs to be(More)
The objective of this paper is to address the selection of dominant modes of a system that can be used to construct a reduced-order model. This work is motivated by high-fidelity computational models that capture fluid and/or structural dynamics, which are prohibitively complex for real-time control. A variety of techniques for obtaining simplified(More)
The objective of this work is to demonstrate the feasibility of tilt in a wind plant. Tilt control, much like other wind plant control strategies, has the potential to improve the performance of a wind plant. Tilt control uses the tilt angle of the turbine to direct the wake above or below the downstream turbines. This paper presents a study of tilt in two-(More)