Jennifer A Teske

Learn More
Selectively-bred obesity-resistant [diet resistant (DR)] rats weigh less than obesity-prone [diet-induced obese (DIO)] rats, despite comparable daily caloric intake, suggesting phenotypic energy expenditure differences. Human data suggest that obesity is maintained by reduced ambulatory or spontaneous physical activity (SPA). The neuropeptide orexin A(More)
Orexin A injected into the lateral hypothalamus (LH) stimulates feeding and activates neurons in brain sites regulating feeding and arousal. The feeding effects of orexin A have been demonstrated during the light cycle, a time when rats are normally resting, and the effect of orexin A on activity after injection into the LH has not been previously measured.(More)
High levels of spontaneous physical activity in lean people and the nonexercise activity thermogenesis (NEAT) derived from that activity appear to protect lean people from obesity during caloric challenge, while obesity in humans is characterized by dramatically reduced spontaneous physical activity. We have similarly demonstrated that obesity-resistant(More)
Resistance to obesity is becoming an exception rather than the norm, and understanding mechanisms that lead some to remain lean in spite of an obesigenic environment is critical if we are to find new ways to reverse this trend. Levels of energy intake and physical activity both contribute to body weight management, but it is challenging for most to adopt(More)
OBJECTIVE To determine if resistance to weight gain is associated with alterations in sleep-wake states and orexin receptor gene expression. DESIGN Three-month-old obesity-susceptible Sprague-Dawley (SD) and obesity-resistant (OR) rats were fed standard rodent chow. Sleep-wake cycle was measured by radiotelemetry and orexin receptor profiles in sleep-wake(More)
OBJECTIVE Sleep restriction in humans increases risk for obesity, but previous rodent studies show weight loss following sleep deprivation, possibly due to stressful methods used to prevent sleep. Obesity-resistant (OR) rats exhibit consolidated-sleep and resistance to weight gain. It was hypothesized that sleep disruption by a less-stressful method would(More)
Understanding the mechanism of energy flux may be critical for explaining how obesity has emerged as a public health epidemic. It is known that changes in caloric intake predictably alter physical activity levels (PA) in mammals. Here, our goal was to test the hypothesis that fasting induces a biphasic pattern of change in PA by measuring PA before and(More)
The hypothalamic neuropeptides orexin A and B (hypocretin 1 and 2) are important homeostatic mediators of central control of energy metabolism and maintenance of sleep/wake states. Dysregulation or loss of orexin signaling has been linked to narcolepsy, obesity, and age-related disorders. In this review, we present an overview of our current understanding(More)
Lean individuals have high levels of spontaneous physical activity (SPA) and the energy expenditure derived from that activity, termed non-exercise activity thermogenesis or NEAT, appears to protect them from obesity. Conversely, obesity in different human populations is characterized by low levels of SPA and NEAT. Like in humans, elevated SPA in rats(More)
There is significant variability in diet-induced obesity (DIO) among humans and rodents, which has been associated with differences in intrinsic spontaneous physical activity (SPA). The orexin neuropeptides positively modulate SPA through multiple brain sites, but the effects of DIO on orexin's activity are not well understood. In this study, we tested the(More)