Jennifer A Runquist

Learn More
3-Hydroxy-3-methylglutaryl-CoA (HMG-CoA) lyase is a key enzyme in the ketogenic pathway that supplies metabolic fuel to extrahepatic tissues. Enzyme deficiency may be due to a variety of human mutations and can be fatal. Diminished activity has been explained based on analyses of recombinant human mutant proteins or, more recently, in the context of(More)
CO dehydrogenase/acetyl-coenzyme A synthase (CODH) is the central enzyme in the pathway of acetyl-coenzyme A biosynthesis in Clostridium thermoaceticum. It catalyzes the interconversion of CO and CO2 and the synthesis of acetyl-coenzyme A from the methylated corrinoid/iron sulfur protein, CO, and coenzyme A. It is a nickel-iron-sulfur protein and contains(More)
HMG-CoA lyase (HMGCL) is crucial to ketogenesis, and inherited human mutations are potentially lethal. Detailed understanding of the HMGCL reaction mechanism and the molecular basis for correlating human mutations with enzyme deficiency have been limited by the lack of structural information for enzyme liganded to an acyl-CoA substrate or inhibitor. Crystal(More)
Acetogenic bacteria fix CO or CO2 by a pathway of autotrophic growth called the acetyl-CoA (or Wood) pathway. Key enzymes in the pathway are a methyltransferase, a corrinoid/Fe-S protein, a disulfide reductase, and a carbon monoxide dehydrogenase. This manuscript describes the isolation of the genes that code for the methyltransferase, the two subunits of(More)
Rhodobacter sphaeroides phosphoribulokinase (PRK) binds ATP substrate, as well as spectroscopically active ATP analogs (trinitrophenyl-ATP and ATP gamma S-acetamidoproxyl), to form stable binary complexes. Stoichiometric binding of these nucleotide triphosphates in PRK's substrate site is observed not only with wild-type enzyme but also with D42A and D169A(More)
The essential photosynthetic enzyme phosphoribulokinase (PRK) is responsible for the conversion of ribulose 5-phosphate (Ru5P) to ribulose 1,5-bisphosphate, the substrate for the CO2 fixing enzyme ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco). We have determined the structure of the octameric bacterial form of PRK to a resolution of 2.5 A. The(More)
The DNA encoding Rhodobacter sphaeroides phosphoribulokinase (PRK) has been modified to allow ligation into pET-3d. Using the resulting expression plasmid, PRK was overexpressed in Escherichia coli and isolated in milligram quantities. Homogeneous preparations of the enzyme exhibit properties comparable to those of PRK expressed using a previously described(More)
The N-terminal region of phosphoribulokinase (PRK) has been proposed to contain a "P-loop" or "Walker A" motif. In Rhodobacter sphaeroides PRK, four alcohol side chains, contributed by S14, T18, S19, and T20, map within the P loop and represent potential Mg-ATP ligands. Each of these has been individually replaced with an alanine and the impact of these(More)
Bacterial phosphoribulokinases (PRKs) are octameric members of the adenylate kinase family of enzymes. The enzyme is allosterically activated by NADH and allosterically inhibited by AMP. We have determined the crystal structure of PRK from Rhodobacter sphaeroides bound to the ATP analogue AMP-PCP to a resolution of 2.6 A. The structure reveals that the ATP(More)
A recombinant form of Rhodobacter sphaeroides phosphoribulokinase (form I; NADH dependent) has been expressed in and purified to homogeneity from Escherichia coli that harbor the prkA gene in the plasmid pKP1565b. Restriction digestion of the phosphoribulokinase-encoding plasmid produces a tractable 450 bp fragment that encodes amino acid residues 28-179,(More)