Jennifer A. Marshall Graves

Learn More
We report a high-quality draft of the genome sequence of the grey, short-tailed opossum (Monodelphis domestica). As the first metatherian ('marsupial') species to be sequenced, the opossum provides a unique perspective on the organization and evolution of mammalian genomes. Distinctive features of the opossum chromosomes provide support for recent theories(More)
Mammals have an XX:XY system of chromosomal sex determination in which a small heterochromatic Y controls male development. The Y contains the testis determining factor SRY, as well as several genes important in spermatogenesis. Comparative studies show that the Y was once homologous with the X, but has been progressively degraded, and now consists largely(More)
The first sequenced marsupial genome promises to reveal unparalleled insights into mammalian evolution. We have used the Monodelphis domestica (gray short-tailed opossum) sequence to construct the first map of a marsupial major histocompatibility complex (MHC). The MHC is the most gene-dense region of the mammalian genome and is critical to immunity and(More)
The karyotypes of marsupial species are characterized by their relatively low number of chromosomes, and their conservation. Most species have diploid numbers lying between the two modes, 2n = 14 and 2n = 22, but the karyotype of Aepyprymnus rufescens is exceptional in containing 2n = 32 chromosomes. Many differences in diploid number between marsupial(More)
Chickens and the great flightless emu belong to two distantly related orders of birds in the carinate and ratite subclasses that diverged at least 80 million years ago. In the first ZOO-FISH study between bird species, we hybridized single chromosome paints from the chicken (Gallus domesticus) onto the emu chromosomes. We found that the nine(More)
Marsupials and monotremes, the mammals most distantly related to placental mammals, share essentially the same genome but show major variations in chromosome organization and function. Rules established for the mammalian genome by studies of human and mouse do not always apply to these distantly related mammals, and we must make new and more general laws.(More)
Sex in reptiles is determined by genes on sex chromosomes or by incubation temperature. Previously these two modes were thought to be distinct, yet we show that high incubation temperatures reverse genotypic males (ZZ) to phenotypic females in a lizard with ZZ and ZW sex chromosomes. Thus, the W chromosome is not necessary for female differentiation. Sex(More)
Genetic models predict that genomic rearrangement in hybrids can facilitate reproductive isolation and the formation of new species by preventing gene flow between the parent species and hybrid (sunflowers are an example). The mechanism underlying hybridization-induced chromosome remodelling is as yet unknown, although mobile element activity has been shown(More)
The bearded dragon, Pogona vitticeps (Agamidae: Reptilia) is an agamid lizard endemic to Australia. Like crocodilians and many turtles, temperature-dependent sex determination (TSD) is common in agamid lizards, although many species have genotypic sex determination (GSD). P. vitticeps is reported to have GSD, but no detectable sex chromosomes. Here we used(More)