Learn More
DNA methylation is a fundamental epigenetic mark known to have wide-ranging effects on gene regulation in a variety of animal taxa. Comparative genomic analyses can help elucidate the function of DNA methylation by identifying conserved features of methylated genes and other genomic regions. In this study, we used computational approaches to distinguish(More)
BACKGROUND A molecular process based genotype-to-phenotype map will ultimately enable us to predict how genetic variation among individuals results in phenotypic alterations. Building such a map is, however, far from straightforward. It requires understanding how molecular variation re-shapes developmental and metabolic networks, and how the functional(More)
Phenotypic plasticity, the production of alternative phenotypes (or morphs) from the same genotype due to environmental factors, results in some genes being expressed in a morph-biased manner. Theoretically, these morph-biased genes experience relaxed selection, the consequence of which is the buildup of slightly deleterious mutations at these genes. Over(More)
Genome-wide patterns of diversity and selection are critical measures for understanding how evolution has shaped the genome. Yet, these population genomic estimates are available for only a limited number of model organisms. Here we focus on the population genomics of the pea aphid (Acyrthosiphon pisum). The pea aphid is an emerging model system that(More)
The pea aphid, Acyrthosiphon pisum, exhibits several environmentally cued polyphenisms, in which discrete, alternative phenotypes are produced. At low-density, parthenogenetic females produce unwinged female progeny, but at high-density females produce progeny that develop with wings. These alternative phenotypes represent a solution to the competing(More)
When females can reproduce without males, do males become an evolutionarily weaker sex whose genes experience mutational decay? We addressed this hypothesis in aphids, whose reproduction alternates between parthenogenetic and sexual forms: Over the course of a year, there can be 10 to 20 generations of asexual females but only a single, if any, generation(More)
Environmental conditions can alter the form, function, and behavior of organisms over short and long timescales, and even over generations. Aphid females respond to specific environmental cues by transmitting signals that have the effect of altering the development of their offspring. These epigenetic phenomena have positioned aphids as a model for the(More)
The developmental gene optomotor-blind (omb) encodes a T-box-containing transcription factor that has multiple roles in Drosophila development. Previous genetic analyses established that omb plays a key role in establishing the abdominal pigmentation pattern of Drosophila melanogaster. In this report we examine patterns of omb nucleotide variation in D.(More)
Genetic model organisms have gifted researchers with a breathtakingly detailed understanding of the most intimate aspects of their genomes, cells, and development. And yet there is a problem—model organisms have been selected because they have simple life histories and happily inhabit laboratories. In short, they make a virtue of being boring. But the(More)