Jennifer A. A. Gubbels

Learn More
The mucin MUC16 and the glycosylphosphatidylinositol anchored glycoprotein mesothelin likely facilitate the peritoneal metastasis of ovarian tumors. The biochemical basis and the kinetics of the binding between these two glycoproteins are not clearly understood. Here we have addressed this deficit and provide further evidence supporting the role of the(More)
The hu14.18-IL2 (EMD 273063) IC, consisting of a GD(2)-specific mAb genetically engineered to two molecules of IL-2, is in clinical trials for treatment of GD(2)-expressing tumors. Anti-tumor activity of IC in vivo and in vitro involves NK cells. We studied the kinetics of retention of IC on the surface of human CD25(+)CD16(-) NK cell lines (NKL and RL12)(More)
The ovarian tumour marker MUC16 (CA125) inhibits the cytotoxic responses of human natural killer (NK) cells and down-regulates CD16. Here we show that approximately 10% of the peripheral blood NK cells (PBNK) from the epithelial ovarian cancer (EOC) patients are CD16(-) CD56(br) whereas 40% of the peritoneal fluid NK (PFNK) carry this phenotype, which is(More)
Ovarian cancer is particularly insidious in nature. Its ability to go undetected until late stages coupled with its non-descript signs and symptoms make it the seventh leading cause of cancer related deaths in women. Additionally, the lack of sensitive diagnostic tools and resistance to widely accepted chemotherapy regimens make ovarian cancer devastating(More)
The huKS-IL2 immunocytokine (IC) consists of IL2 fused to a mAb against EpCAM, while the hu14.18-IL2 IC recognizes the GD2 disialoganglioside. They are under evaluation for treatment of EpCAM+ (ovarian) and GD2+ (neuroblastoma and melanoma) malignancies because of their proven ability to enhance tumor cell killing by antibody-dependent cell-mediated(More)
The complexity of the immune system demands an intricate defense mechanism by tumors. Ovarian and other tumors employ specific glycoproteins and the associated glycan sequences to modulate immune responses. Glycoproteins enable tumor cells that express or secrete these molecules to evade immune cell attack and induce the immune system to promote tumor(More)
Cancer cells utilize a variety of mechanisms to evade immune detection and attack. Effective immune detection largely relies on the formation of an immune synapse which requires close contact between immune cells and their targets. Here, we show that MUC16, a heavily glycosylated 3-5 million Da mucin expressed on the surface of ovarian tumor cells, inhibits(More)
PROBLEM MUC16 (CA125) released from ovarian tumors binds to NK cells and monocytes via the inhibitory receptor Siglec-9. Here, we investigate whether MUC16 also binds to circulating immune cells during pregnancy and in women with preeclampsia. METHOD OF STUDY MUC16 binding was monitored by flow cytometry and immunoprecipitation, and RT-PCR was used to(More)
OBJECTIVES The incidence of chemotherapy induced peripheral neuropathy (CIPN) is 15-25% with platinum and taxanes. CIPN can be permanent and often requires dose reduction or change in chemotherapy. Acetyl-l-carnitine (ALCAR), an ester of l-carnitine, is used to treat CIPN in humans and in animal models. The goals of this study are: 1) examine the effects of(More)
OBJECTIVES The ovarian tumor marker CA125 is expressed on human MUC16, a cell surface bound mucin that is also shed by proteolytic cleavage. Human MUC16 is overexpressed by ovarian cancer cells. MUC16 facilitates the binding of ovarian tumor cells to mesothelial cells lining the peritoneal cavity. Additionally, MUC16 also is a potent inhibitor of natural(More)