Jenna Mattingly

Learn More
The ion-gating ability and the protein electrophoretic band patterns of the acetylcholine receptor from Torpedo californica electroplax were examined after receptor-enriched membrane vesicles were progressively heated. The ion translocation function was lost over a temperature range of 40-55 degrees C. Previous results have shown that the stoichiometry of(More)
A 2.4 kilobase cDNA for rat mitochondrial aspartate aminotransferase (E.C. 2.6.1.1.) was isolated and sequenced. The predicted presequence is 93% homologous to the presequences of the enzyme from pig and mouse. The predicted amino acid sequence of the mature enzyme differs from that determined directly by amino acid sequencing (Huynh, Q.K., Sakakibara, R.,(More)
The precursor to rat mitochondrial aspartate aminotransferase (pmAspAT) can be expressed in and purified from Escherichia coli as a fully active enzyme with remarkable trypsin resistance. Only two sites within the presequence are readily hydrolyzed (Martinez-Carrion, M., Altieri, F., Iriarte, A., Mattingly, J. R., Youssef, J., and Wu, T. (1990) Ann. N.Y.(More)
The precursor (pmAspAT) and mature (mAspAT) forms of mitochondrial aspartate aminotransferase interact with hsp70 very early during translation when synthesized in either rabbit reticulocyte lysate or wheat germ extract (Lain, B., Iriarte, A., and Martinez-Carrion. (1994) J. Biol. Chem. 269, 15588-15596). The nature of the structural elements responsible(More)
~-Aspartate:2-oxoglutarate aminotransferase (EC 2.6.1.1) of higher organisms exists as cytoplasmic and mitochondrial isozymes with a high degree of sequence homology. This report describes an NMR study of the environment of the phosphate of the pyridoxal 5’-phosphate cofactor in the mitochondrial isozyme as revealed by the effect of pH on its 31P NMR(More)
The homologous cytosolic and mitochondrial isozymes of aspartate aminotransferase (c- and mAspAT, respectively) seem to follow very different folding pathways after synthesis in rabbit reticulocyte lysate, suggesting that the nascent proteins interact differently with molecular chaperones (Mattingly, J. R., Jr., Iriarte, A., and Martinez-Carrion, M. (1993)(More)
alpha-Bungarotoxin (alpha-Bgt) is a potent postsynaptic neurotoxin which blocks neurotransmission by binding very tightly to the acetylcholine-receptor (AcChR) protein. We have previously shown (P. Calvo-Fernandez, and M. Martinez-Carrion (1981) Arch. Biochem. Biophys. 208, 154-159) that alpha-Bgt free in its native solution conformation incorporates 12(More)
When the precursor to mitochondrial aspartate aminotransferase (pmAspAT) is synthesized in a rabbit reticulocyte lysate translation system (RRL), its properties are quite unlike those of the purified protein (Mattingly, J.R., Jr., Youssef, J., Iriarte, A., and Martinez-Carrion, M. (1993) J. Biol. Chem. 268, 3925-3937). These results suggest that molecular(More)
The time reversal of stochastic diffusion processes is revisited with emphasis on the physical meaning of the time-reversed drift and the noise prescription in the case of multiplicative noise. The local kinematics and mechanics of free diffusion are linked to the hydrodynamic description. These properties also provide an interpretation of the Pope-Ching(More)
We explore the connection between a stochastic simulation model and an ordinary differential equations (ODEs) model of the dynamics of an excitable gene circuit that exhibits noise-induced oscillations. Near a bifurcation point in the ODE model, the stochastic simulation model yields behavior dramatically different from that predicted by the ODE model. We(More)