Learn More
The fungal pathogen Candida albicans is frequently associated with catheter-based infections because of its ability to form resilient biofilms. Prior studies have shown that the transcription factor Bcr1 governs biofilm formation in an in vitro catheter model. However, the mechanistic role of the Bcr1 pathway and its relationship to biofilm formation in(More)
Candida dubliniensis is an emerging pathogenic yeast species closely related to Candida albicans and frequently found colonizing or infecting the oral cavities of HIV/AIDS patients. Drug resistance during C. dubliniensis infection is common and constitutes a significant therapeutic challenge. The calcineurin inhibitor FK506 exhibits synergistic fungicidal(More)
A biofilm is an organized, resilient group of microbes in which individual cells acquire properties, such as drug resistance, that are distinct from those observed in suspension cultures. Here, we describe and analyze the transcriptional network controlling biofilm formation in the pathogenic yeast Candida albicans, whose biofilms are a major source of(More)
A biofilm is a surface-associated population of microorganisms embedded in a matrix of extracellular polymeric substances. Biofilms are a major natural growth form of microorganisms and the cause of pervasive device-associated infection. This report focuses on the biofilm matrix of Candida albicans, the major fungal pathogen of humans. We report here that(More)
Hwp1 is a well-characterized Candida albicans cell surface protein, expressed only on hyphae, that mediates tight binding to oral epithelial cells. Prior studies indicate that HWP1 expression is dependent upon Bcr1, a key regulator of biofilm formation. Here we test the hypothesis that Hwp1 is required for biofilm formation. In an in vitro model, the(More)
Candida infections frequently involve drug-resistant biofilm growth on device surfaces. Glucan synthase gene FKS1 has been linked to triazole resistance in Candida biofilms. We tested the impact of FKS1 modulation on susceptibility to additional antifungal classes. Reduction of FKS1 expression rendered biofilms more susceptible to amphotericin B,(More)
The most common form of oral candidiasis, denture-associated stomatitis, involves biofilm growth on an oral prosthetic surface. Cells in this unique environment are equipped to withstand host defenses and survive antifungal therapy. Studies of the biofilm process on dentures have primarily been limited to in vitro models. We developed a rodent acrylic(More)
Medical device-associated infections involve the attachment of cells to a surface, production of an extracellular matrix and development of a mature biofilm. Many Candida albicans disease states involve biofilm growth. These infections have great impact on public health because organisms in biofilms exhibit dramatically reduced susceptibility to antifungal(More)
BACKGROUND Biofilms are surface-associated microbial communities with significant environmental and medical impact. Here, we focus on an adherence mechanism that permits biofilm formation by Candida albicans, the major invasive fungal pathogen of humans. RESULTS The Als surface-protein family has been implicated in biofilm formation, and we show that Als1(More)
Calcineurin is a Ca2+-calmodulin-activated serine/threonine-specific protein phosphatase that governs multiple aspects of fungal physiology, including cation homeostasis, morphogenesis, antifungal drug susceptibility, and virulence. Growth of Candida albicans planktonic cells is sensitive to the calcineurin inhibitors FK506 and cyclosporine A (CsA) in(More)