Learn More
In Xenopus, convergence and extension are produced by active intercalation of the deep mesodermal cells between one another along the mediolateral axis (mediolateral cell intercalation), to form a narrower, longer array. The cell motility driving this intercalation is poorly understood. A companion paper shows that the endodermal epithelium organizes the(More)
There is great interest in the patterning and morphogenesis of the vertebrate nervous system, but the morphogenetic movements involved in early neural development and their underlying cellular mechanisms are poorly understood. This paper describes the cellular basis of the early neural morphogenesis of Xenopus laevis. The results have important implications(More)
We discuss the cellular basis and tissue interactions regulating convergence and extension of the vertebrate body axis in early embryogenesis of Xenopus. Convergence and extension occur in the dorsal mesoderm (prospective notochord and somite) and in the posterior nervous system (prospective hindbrain and spinal cord) by sequential cell intercalations.(More)
In a companion paper (Shih, J. and Keller, R. (1992) Development 116, 901-914), we described a sequence of cell behaviors, called mediolateral intercalation behavior (MIB), that produces mediolateral cell intercalation, the process that drives convergence and extension of the axial and paraxial mesoderm of Xenopus. In this paper, we describe the pattern of(More)
The processes thought to function in Xenopus gastrulation include bottle cell formation, migration of cells on the roof of the blastocoel, and autonomous convergent extension of the circumblastoporal region. A review of recent and classical results shows that only the last accounts for the bulk of the tissue displacement of gastrulation, including spreading(More)
This paper demonstrates that convergence and extension within the neural plate of Xenopus laevis are regulated by planar inductive interactions with the adjacent Spemann organizer. The companion article (Keller et al.: Developmental Dynamics 193:199-217, 1992) showed that the prospective hindbrain and spinal cord occupy a very short and very wide area just(More)
A multi-channel piezoelectric quartz crystal sensor with a homemade computer interface was prepared and employed in the present study to detect mixture of organic molecules. Back propagation neural network (BPN) was used to distinguish the species in the mixture organic molecules and multivariate linear regression analysis (MLR) was used to compute the(More)
  • 1