Jene A. Golovchenko

Learn More
A variety of different DNA polymers were electrophoretically driven through the nanopore of an alpha-hemolysin channel in a lipid bilayer. Single-channel recording of the translocation duration and current flow during traversal of individual polynucleotides yielded a unique pattern of events for each of the several polymers tested. Statistical data derived(More)
A nanometre-scale pore in a solid-state membrane provides a new way of electronically probing the structure of single linear polymers, including those of biological interest in their native environments. Previous work with biological protein pores wide enough to let through and sense single-stranded DNA molecules demonstrates the power of using nanopores,(More)
Manipulating matter at the nanometre scale is important for many electronic, chemical and biological advances, but present solid-state fabrication methods do not reproducibly achieve dimensional control at the nanometre scale. Here we report a means of fashioning matter at these dimensions that uses low-energy ion beams and reveals surprising atomic(More)
Isolated, atomically thin conducting membranes of graphite, called graphene, have recently been the subject of intense research with the hope that practical applications in fields ranging from electronics to energy science will emerge. The atomic thinness, stability and electrical sensitivity of graphene motivated us to investigate the potential use of(More)
Atomic layer deposition of alumina enhanced the molecule sensing characteristics of fabricated nanopores by fine-tuning their surface properties, reducing 1/f noise, neutralizing surface charge to favor capture of DNA and other negative polyelectrolytes, and controlling the diameter and aspect ratio of the pores with near single Ångstrom precision. The(More)
Properly fashioned electromagnetic fields coupled to microscopic dielectric objects can be used to create arrays of extended crystalline and noncrystalline structures. Organization can be achieved in two ways: In the first, dielectric matter is transported in direct response to the externally applied standing wave optical fields. In the second, the external(More)
A study of ion sculpting dynamics in SiO2 and SiN using periodically pulsed ion beams reveals material transport that depends strongly on the time structure of the pulsed beams. It is found that significant nanoscale matter transport can occur over second long time scales after the ion beam has been extinguished. A simple phenomenological model described(More)
The development of solid-state nanopores, inspired by their biological counterparts, shows great potential for the study of single macromolecules. Applications such as DNA sequencing and the exploration of protein folding require control of the dynamics of the molecule's interaction with the pore, but DNA capture by a solid-state nanopore is not well(More)
The accuracy of sequencing single DNA molecules with nanopores is continually improving, but de novo genome sequencing and assembly using only nanopore data remain challenging. Here we describe PoreSeq, an algorithm that identifies and corrects errors in nanopore sequencing data and improves the accuracy of de novo genome assembly with increasing coverage(More)
We present quantitative measurements of the spatial density profile of Bose-Einstein condensates of sodium atoms confined in a 4-Dee magnetic bottle. The condensates are imaged in transmission with near-resonant laser light. We demonstrate that the Thomas-Fermi surface of a condensate can be determined to better than 1%. More generally, we obtain excellent(More)