Jendrik Schöppe

Learn More
ATP binding cassette (ABC) transporters mediate vital transport processes in every living cell. ATP hydrolysis, which fuels transport, displays positive cooperativity in numerous ABC transporters. In particular, heterodimeric ABC exporters exhibit pronounced allosteric coupling between a catalytically impaired degenerate site, where nucleotides bind(More)
BCL-W is a member of the BCL-2 family of anti-apoptotic proteins. A key event in the regulation of apoptosis is the heterodimerization between anti-apoptotic and pro-apoptotic family members, which involves a conserved surface-exposed groove on the anti-apoptotic proteins. Crystal structures of the ligand binding-competent conformation exist for all(More)
Antibodies are the most versatile binding proteins in nature with six loops creating a flexible continuous interaction surface. However, in some molecular formats, antibodies are aggregation prone. Designed ankyrin repeat proteins (DARPins) were successfully created as alternative design solutions. Nevertheless, their concave shape, rigidity and(More)
Agonist binding to G-protein-coupled receptors (GPCRs) triggers signal transduction cascades involving heterotrimeric G proteins as key players. A major obstacle for drug design is the limited knowledge of conformational changes upon agonist binding, the details of interaction with the different G proteins, and the transmission to movements within the G(More)
Fluorescent probes constitute a valuable toolbox to address a variety of biological questions and they have become irreplaceable for imaging methods. Commonly, such probes consist of fluorescent proteins or small organic fluorophores coupled to biological molecules of interest. Recently, a novel class of fluorescence-based probes, fluorogen-activating(More)
Lipidic cubic phases (LCPs) are used in areas ranging from membrane biology to biodevices. Because some membrane proteins are notoriously unstable at room temperature, and available LCPs undergo transformation to lamellar phases at low temperatures, development of stable low-temperature LCPs for biophysical studies of membrane proteins is called for.(More)
Despite recent successes, many G protein-coupled receptors (GPCRs) remained refractory to detailed molecular studies due to insufficient production yields, even in the most sophisticated eukaryotic expression systems. Here we introduce a robust method employing directed evolution of GPCRs in yeast that allows fast and efficient generation of receptor(More)
  • 1