Jelena Mirkovic

Learn More
Distributed denial-of-service (DDoS) is a rapidly growing problem. The multitude and variety of both the attacks and the defense approaches is overwhelming. This paper presents two taxonomies for classifying attacks and defenses, and thus provides researchers with a better understanding of the problem and the current solution space. The attack(More)
Distributed denial-of-service (DDoS) attacks present an Internet-wide threat. We propose D-WARD, a DDoS defense system deployed at source-end networks that autonomously detects and stops attacks originating from these networks. Attacks are detected by the constant monitoring of two-way traffic flows between the network and the rest of the Internet and(More)
Forcing all IP packets to carry correct source addresses can greatly help network security, attack tracing, and network problem debugging. However, due to asymmetries in today's Internet routing, routers do not have readily available information to verify the correctness of the source address for each incoming packet. In this paper we describe a new(More)
Defenses against flooding distributed denial-of-service (DDoS) commonly respond to the attack by dropping the excess traffic, thus reducing the overload at the victim. The major challenge is the differentiation of the legitimate from the attack traffic, so that the dropping policies can be selectively applied. We propose D-WARD, a source-end DDoS defense(More)
We identify a number of principles with respect to prediction that, we argue, underpin adult language comprehension: (a) comprehension consists in realizing a mapping between the unfolding sentence and the event representation corresponding to the real-world event being described; (b) the realization of this mapping manifests as the ability to predict both(More)
Since 2004, the DETER Cybersecurity Testbed Project has worked to create the necessary infrastructure — facilities, tools, and processes-to provide a national resource for experimentation in cyber security. The next generation of DETER envisions several conceptual advances in testbed design and experimental research methodology, targeting improved(More)
This work investigates production preferences in different languages. Specifically, it examines how animacy, competition processes, and language-specific constraints shape speakers' choices of structure. English, Spanish and Serbian speakers were presented with depicted events in which either an animate or inanimate entity was acted upon by an agent.(More)
Increasing use of the Internet for critical services makes flooding distributed denial-of-service (DDoS) a top security threat. A distributed nature of DDoS suggests that a distributed mechanism is necessary for a successful defense. Three main DDoS defense functionalities - attack detection, rate limiting and traffic differentiation - are most effective(More)
The DETER project aims to advance cybersecurity research and education. Over the past seven years, the project has focused on improving and redefining the methods, technology, and infrastructure for developing cyberdefense technology. The project's research results are put into practice by DeterLab, a public, free-for-use experimental facility available to(More)
Flash-crowd attacks are the most vicious form of distributed denial of service (DDoS). They flood the victim with service requests generated from numerous bots. Attack requests are identical in content to those generated by legitimate, human users, and bots send at a low rate to appear non-aggressive — these features defeat many existing DDoS defenses. We(More)