Jelena Ivetic

Learn More
This paper gives a characterisation, via intersection types, of the strongly normalising terms of an intuitionistic sequent calculus (where LJ easily embeds). The soundness of the typing system is reduced to that of a well known typing system with intersection types for the ordinary λ-calculus. The completeness of the typing system is obtained from subject(More)
This paper gives a characterisation, via intersection types, of the strongly normalising proof-terms of an intuitionistic sequent calculus (where LJ easily embeds). The soundness of the typing system is reduced to that of a well known typing system with intersection types for the ordinary λ-calculus. The completeness of the typing system is obtained from(More)
In this paper we investigate the λ-calculus, a λ-calculus enriched with resource control. Explicit control of resources is enabled by the presence of erasure and duplication operators, which correspond to thinning and contraction rules in the type assignment system. We introduce directly the class of λ-terms and we provide a new treatment of substitution by(More)
In this paper we invite the reader to a journey through three lambda calculi with resource control: the lambda calculus, the sequent lambda calculus, and the lambda calculus with explicit substitution. All three calculi enable explicit control of resources due to the presence of weakening and contraction operators. Along this journey, we propose(More)
In this paper we invite the reader to a journey through three lambda calculi with resource control: the lambda calculus, the sequent lambda calculus, and the lambda calculus with explicit substitution. All three calculi enable explicit control of resources due to the presence of weakening and contraction operators. Along this journey, we propose(More)
  • 1