Learn More
Embryonic stem (ES) cells provide a flexible and unlimited source for a variety of neuronal types. Because mature neurons establish neuronal networks very easily, we tested whether ES-derived neurons are capable of generating functional networks and whether these networks, generated in vitro, are capable of processing information. Single-cell(More)
Mechanical properties such as force generation are fundamental for neuronal motility, development and regeneration. We used optical tweezers to compare the force exerted by growth cones (GCs) of neurons from the Peripheral Nervous System (PNS), such as Dorsal Root Ganglia (DRG) neurons, and from the Central Nervous System (CNS) such as hippocampal neurons.(More)
Guidance molecules, such as Sema3A or Netrin-1, induce growth cone (GC) repulsion or attraction. In order to determine the speed of action and efficiency of these guidance cues we developed an experimental procedure to deliver controlled amounts of these molecules. Lipid vesicles encapsulating 10-10(4) molecules of Sema3A or Netrin-1 were manipulated with(More)
Atomic force microscopy (AFM) provides the possibility to map the 3D structure of viewed objects with a nanometric resolution, which cannot be achieved with other imaging methods such as conventional video imaging and confocal fluorescent microscopy. Video imaging with CCD cameras can provide an analysis of biological events with a temporal and spatial(More)
During early development of the central nervous system, there is an excessive outgrowth of neuronal projections, which later need to be refined to achieve precise connectivity. Axon pruning and degeneration are strategies used to remove exuberant neurites and connections in the immature nervous system to ensure the proper formation of functional circuitry.(More)
Recent results from network theory show that complexity affects several dynamical properties of networks that favor synchronization. Here we show that synchronization in 2D and 3D neuronal networks is significantly different. Using dissociated hippocampal neurons we compared properties of cultures grown on a flat 2D substrates with those formed on 3D(More)
BACKGROUND Since different culturing parameters - such as media composition or cell density - lead to different experimental results, it is important to define the protocol used for neuronal cultures. The vital role of astrocytes in maintaining homeostasis of neurons - both in vivo and in vitro - is well established: the majority of improved culturing(More)
Guidance molecules, such as Sema3A or Netrin-1, can induce growth cone (GC) repulsion or attraction in the presence of a flat surface, but very little is known of the action of guidance molecules in the presence of obstacles. Therefore we combined chemical and mechanical cues by applying a steady Netrin-1 stream to the GCs of dissociated hippocampal neurons(More)
  • 1