Jehangir S. Wadia

Learn More
Studies in non-neural cells have suggested that a fall in mitochondrial membrane potential (DeltaPsiM) is one of the earliest events in apoptosis. It is not known whether neural apoptosis caused by nerve growth factor (NGF) and serum withdrawal involves a decrease in DeltaPsiM. We used epifluorescence and laser confocal microscopy with the mitochondrial(More)
Seizures may cause brain damage due to mechanisms initiated by excessive excitatory synaptic transmission. One such mechanism is the activation of death-promoting intracellular cascades by the influx and the perturbed homeostasis of Ca2+. The neuroprotective effects of preventing the entry of Ca2+ from voltage-dependent Ca2+ channels, NMDA receptors, and(More)
Transmissible spongiform encephalopathies, including variant-Creutzfeldt-Jakob disease (vCJD) in humans and bovine spongiform encephalopathies in cattle, are fatal neurodegenerative disorders characterized by protein misfolding of the host cellular prion protein (PrP(C)) to the infectious scrapie form (PrP(Sc)). However, the mechanism that exogenous PrP(Sc)(More)
How seizures arise and recur in epilepsy is unknown. Recent genetic, pharmacological and electrophysiological data indicate a significant but undisclosed role for voltage-dependent calcium channels. Since the contribution such channels make to nerve function reflects the targeting of discrete subtypes to distinct cellular regions, we hypothesized that(More)
The mechanisms underlying epilepsy are largely unknown. Recent genetic, pharmacological and electrophysiological data indicate a significant, but poorly understood, role for voltage-dependent calcium channels (VDCCs). Since the contribution of ion channels to nerve function depends on their cell surface distribution, we hypothesized that epilepsy might(More)
  • 1