Learn More
BACKGROUND The regulation of the chloroplast antioxidant capacity depends on nuclear gene expression. For the 2-Cys peroxiredoxin-A gene (2CPA) a cis-regulatory element was recently characterized, which responds to photosynthetic redox signals. RESULTS In a yeast-one-hybrid screen for cis-regulatory binding proteins, the transcription factor Rap2.4a was(More)
The initiation of chloroplast development in the light is dependent on nuclear encoded components. The nuclear genes encoding key components in the photosynthetic machinery are regulated by signals originating in the plastids. These plastid signals play an essential role in the regulation of photosynthesis associated nuclear genes (PhANGs) when proplastids(More)
The rimb1 (redox imbalanced 1) mutation was mapped to the RCD1 locus (radical-induced cell death 1; At1g32230) demonstrating that a major factor involved in redox-regulation genes for chloroplast antioxidant enzymes and protection against photooxidative stress, RIMB1, is identical to the regulator of disease response reactions and cell death, RCD1.(More)
Mediator is a conserved multi-protein complex that acts as a bridge between promoter-bound transcriptional regulators and RNA polymerase II. While redox signaling is important in adjusting plant metabolism and development, the involvement of Mediator in redox homeostasis and regulation only recently started to emerge. Our previous results show that the(More)
In response to environmental light signals, gene expression adjustments play an important role in regulation of photomorphogenesis. LHCB2.4 is among the genes responsive to light signals, and its expression is regulated by redox-regulated members of G-group bZIP transcription factors. The biochemical interrelations of GBF1-interacting protein 1 (GIP1) and(More)
  • 1