Jeffry D. Madura

Learn More
A re-parameterization of the standard TIP4P water model for use with Ewald techniques is introduced, providing an overall global improvement in water properties relative to several popular nonpolarizable and polarizable water potentials. Using high precision simulations, and careful application of standard analytical corrections, we show that the new(More)
Taurine mediates a plethora of membrane-linked effects in excitable tissues. To account for these multiple actions, four hypotheses have been proposed. One theory is based on the observation that taurine diminishes the inflammatory response of several cytotoxic oxidants. It is proposed that a reduction in the extent of membrane oxidative injury contributes(More)
The sizes and anomers of the products formed during the hydrolysis of chitin oligosaccharides by the Family 18 chitinase A (ChiA) from Serratia marcescens were analysed by hydrophilic interaction chromatography using a novel approach in which reactions were performed at 0 degrees C to stabilize the anomer conformations of the initial products.(More)
There are several Quantitative Structure-Activity Relationship (QSAR) methods to assist in the design of compounds for medicinal use. Owing to the different QSAR methodologies, deciding which QSAR method to use depends on the composition of system of interest and the desired results. The relationship between a compound's binding affinity/activity to its(More)
Efficient and accurate mapping of transition pathways is a challenging problem in allosteric proteins. We propose here a to our knowledge new methodology called collective molecular dynamics (coMD). coMD takes advantage of the collective modes of motions encoded by the fold, simultaneously evaluating the interactions and energetics via a full-atomic MD(More)
The enzyme triose phosphate isomerase has flexible peptide loops at its active sites. The loops close over these sites upon substrate binding, suggesting that the dynamics of the loops could be of mechanistic and kinetic importance. To investigate these issues, the loop motions in the dimeric enzyme were simulated by Brownian dynamics. The two loops, one on(More)
In a variety of mammalian species it has been established that taurine is a necessary component of the visual system, however, the exact mechanism(s) as to the function of taurine is(are) elusive. Additionally, taurine is speculated to be a membrane stabilizer by interacting with phospholipids and a regulator of protein phosphorylation. Therefore the(More)
NAD(P)H/quinone acceptor oxidoreductase type 1 (QR1) protects cells from cytotoxic and neoplastic effects of quinones though two-electron reduction. Kinetic experiments, docking, and binding affinity calculations were performed on a series of structurally varied quinone substrates. A good correlation between calculated and measured binding affinities from(More)
Molecular recognition and binding are two very important processes in virtually all biological and chemical processes. An extremely interesting system involving recognition and binding is that of thermal hysteresis proteins at the ice-water interface. These proteins are of great scientific interest because of their antifreeze activity. Certain fish, insects(More)
Human heparanase is an endo-beta-D-glycosidase that cleaves heparan sulphate (HS) chains in the extracellular matrix and basement membrane. It is known that the cleavage of HS by heparanase results in cell invasion and metastasis of cancer. Therefore, heparanase is considered an important target for cancer drug development. The three-dimensional structure(More)