Jeffrey W. Roberts

Learn More
Transcription and DNA repair are coupled in E. coli by the Mfd protein, which dissociates transcription elongation complexes blocked at nonpairing lesions and mediates recruitment of DNA repair proteins. We show that Mfd influences the elongation state of RNA polymerase (RNAP); transcription complexes that have reverse translocated into the backtracked(More)
The SOS genes of Escherichia coli, which include many DNA repair genes, are induced by DNA damage. Although the central biochemical event in induction, activation of RecA protein through binding of single-stranded DNA and ATP to promote cleavage of the LexA repressor, is known, the cellular event that provides this activation following DNA damage has not(More)
RNA polymerase recognizes its promoters through base-specific interaction between defined segments of DNA and the sigma subunit of the enzyme. This interaction leads to separation of base pairs and exposure of the template strand for RNA synthesis. We show that base-specific recognition by the sigma 70 holoenzyme in this process involves primarily(More)
In transcription initiation, the DNA strands must be separated to expose the template to RNA polymerase. As the closed initiation complex is converted to an open one, specific protein-DNA interactions involving bases of the nontemplate strand form and stabilize the promoter complex in the region of unwinding. Specific interaction between RNA polymerase and(More)
Escherichia coli recA protein catalyzes a specific proteolytic cleavage of repressors in vitro when it is activated by interaction with a single-stranded polynucleotide and nucleoside triphosphate. The ATP analogue adenosine-5'-O-(3-thiotriphosphate) (ATP gamma S) satisfies the NTP requirement. We show here that despite its activity in repressor cleavage,(More)
The recA protein mediates both genetic recombination and several cellular responses to DNA damage, including the induction of temperate bacteriophage. Indication of phage lambda results from proteolytic cleavage of lambda repressor directed by recA protein. We show here that this cleavage reaction requires both polynucleotide and ATP. We suggest that a(More)
By using single-molecule measurements, we demonstrate that the elongation kinetics of individual Escherichia coli RNA polymerase molecules are remarkably homogeneous. We find no evidence of distinct elongation states among RNA polymerases. Instead, the observed heterogeneity in transcription rates results from statistical variation in the frequency and(More)
Transcription terminators recognized by several RNA polymerases include a DNA segment encoding uridine-rich RNA and, for bacterial RNA polymerase, a hairpin loop located immediately upstream. Here, mutationally altered Escherichia coli RNA polymerase enzymes that have different termination efficiencies were used to show that the extent of transcription(More)
Gene expression is modulated by regulatory elements that influence transcription elongation by RNA polymerase: terminators that disrupt the elongation complex and release RNA, and regulators that overcome termination signals. RNA release from Escherichia coli RNA polymerase can be induced by a complementary oligonucleotide that replaces the upstream half of(More)
The structure of an intermediate in the initiation to elongation transition of Escherichia coli RNA polymerase has been visualized through region-specific DNA cleavage by the hydroxyl radical reagent FeBABE. FeBABE was tethered to specific sites of the final sigma(70) subunit and incorporated into two specialized paused elongation complexes that(More)