Learn More
Osteoblasts are essential for maintaining bone mass, avoiding osteoporosis, and repairing injured bone. Activation of osteoblast G protein-coupled receptors (GPCRs), such as the parathyroid hormone receptor, can increase bone mass; however, the anabolic mechanisms are poorly understood. Here we use "Rs1," an engineered GPCR with constitutive G(s) signaling,(More)
BACKGROUND Recently, it has been shown that nuclear magnetic resonance (NMR) may be used to identify ligands that bind to low molecular weight protein drug targets. Recognizing the utility of NMR as a very sensitive method for detecting binding, we have focused on developing alternative approaches that are applicable to larger molecular weight drug targets(More)
The self-assembly of the soluble peptide Abeta into Alzheimer's disease amyloid is believed to involve a conformational change. Hence the solution conformation of Abeta is of significant interest. In contrast to studies in other solvents, in water Abeta is collapsed into a compact series of loops, strands, and turns and has no alpha-helical or beta-sheet(More)
Pin1 is a peptidyl-prolyl isomerase consisting of a WW domain and a catalytic isomerase (PPIase) domain connected by a flexible linker. Pin1 recognizes phospho-Ser/Thr-Pro motifs in cell-signaling proteins, and is both a cancer and an Alzheimer's disease target. Here, we provide novel insight into the functional motions underlying Pin1 substrate interaction(More)
The influence of water binding on the conformational dynamics of the cyclic decapeptide antamanide dissolved in the model lipophilic environment chloroform is investigated by NMR relaxation measurements. The water-peptide complex has a lifetime of 35 μs at 250 K, which is longer than typical lifetimes of water-peptide complexes reported in aqueous solution.(More)
The current canon attributes the binding specificity of protein-recognition motifs to distinctive chemical moieties in their constituent amino acid sequences. However, we show for a WW domain that the sequence crucial for specificity is an intrinsically flexible loop that partially rigidifies upon ligand docking. A single-residue deletion in this loop(More)
Amino acids in the serine proteinase inhibitor eglin c important for its inhibitory specificity and activity have been investigated by site-directed mutagenesis. The specificity of eglin c could be changed from elastase to trypsin inhibition by the point mutation Leu45----Arg (L45R) in position P1 [nomenclature according to Schechter and Berger (1967)(More)