Jeffrey W. Cary

Learn More
An Aspergillus parasiticus gene, designated apa-2, was identified as a regulatory gene associated with aflatoxin biosynthesis. The apa-2 gene was cloned on the basis of overproduction of pathway intermediates following transformation of fungal strains with cosmid DNA containing the aflatoxin biosynthetic genes nor-1 and ver-1. Transformation of an(More)
Aflatoxins are toxic and carcinogenic secondary metabolites produced by the fungi Aspergillus flavus and A. parasiticus. Aflatoxins are synthesized by condensation of acetate units; their synthesis is estimated to involve at least 16 different enzymes. In this study we have shown that at least nine genes involved in the aflatoxin biosynthetic pathway are(More)
Aflatoxins are polyketide-derived secondary metabolites produced by the fungi Aspergillus flavus and Aspergillus parasiticus. Among the catalytic steps in the aflatoxin biosynthetic pathway, the conversion of sterigmatocystin to O-methylsterigmatocystin and the conversion of dihydrosterigmatocystin to dihydro-O-methylsterigmatocystin are catalyzed by an(More)
AFLR is a Zn2Cys6-type sequence-specific DNA-binding protein that is thought to be necessary for expression of most of the genes in the aflatoxin pathway gene cluster in Aspergillus parasiticus and A. flavus, and the sterigmatocystin gene cluster in A. nidulans. However, it was not known whether AFLR bound to the promoter regions of each of the genes in the(More)
The plant pathogenic fungus Aspergillus flavus produces several types of mycotoxins. The most well known are the carcinogenic compounds called aflatoxins. In addition, A. flavus produces cyclopiazonic acid and aflatrem mycotoxins, contributing to the toxicity of A. flavus infected crops. Cyclopiazonic acid is a specific inhibitor of calcium-dependent ATPase(More)
Aflatoxins comprise a group of polyketide-derived carcinogenic mycotoxins produced byAspergillus parasiticus andAspergillus flavus. By transformation with a disruption construct, pXX, we disrupted the aflatoxin pathway inA. parasiticus SRRC 2043, resulting in the inability of this strain to produce aflatoxin intermediates as well as a major yellow pigment(More)
A novel gene, fas-1A, directly involved in aflatoxin B1 (AFB1) biosynthesis, was cloned by genetic complementation of an Aspergillus parasiticus mutant strain, UVM8, blocked at two unique sites in the AFB1 biosynthetic pathway. Metabolite conversion studies localized the two genetic blocks to early steps in the AFB1 pathway (nor-1 and fas-1A) and confirmed(More)
Plants respond to chilling exposure by increasing the relative proportion of polyunsaturated fatty acids in their lipids. However, unlike the response in many other organisms, plant fatty acid desaturase genes are typically not upregulated during this process. We expressed the Brassica napus FAD3 gene, which encodes an enzyme for synthesis of linolenic(More)
DNA isolated from the wild-type aflatoxin-producing (Afl+) fungus Aspergillus parasiticus NRRL 5862 was used to construct a cosmid genomic DNA library employing the homologous gene (pyrG) encoding orotidine monophosphate decarboxylase for selection of fungal transformants. The cosmid library was transformed into an Afl- mutant, A. parasiticus CS10 (ver-1(More)