Jeffrey W Bode

Learn More
One of the most important reactions in organic chemistry--amide bond formation--is often overlooked as a contemporary challenge because of the widespread occurrence of amides in modern pharmaceuticals and biologically active compounds. But existing methods are reaching their inherent limits, and concerns about their waste and expense are becoming sharper.(More)
Saturated N-heterocycles are prevalent in biologically active molecules and are increasingly attractive scaffolds in the development of new pharmaceuticals. Unlike their aromatic counterparts, there are limited strategies for facile construction of substituted saturated N-heterocycles by convergent, predictable methods. In this Synopsis, we discuss recent(More)
Highly enantioselective, N-heterocyclic carbene (NHC)-catalyzed aza-Diels-Alder reactions are described. A novel chiral triazolium salt based on the cis-1,2-aminoindanol platform serves as an efficient precatalyst for the NHC-catalyzed redox generation of enolate dienophiles that undergo LUMOdiene-controlled Diels-Alder reactions with(More)
N-Heterocyclic carbenes, prepared in situ from diarylimidazolium salts, serve as highly effective catalysts for the generation of reactive homoenolates from alpha,beta-unsaturated aldehydes. The catalyst-bound homoenolate reacts with electrophilic aldehydes leading, via the key intermediacy of an activated carboxylate, to gamma-butyrolactones in good yields(More)
[reaction: see text] Cinnamaldehydes and N-sulfonylimines undergo direct annulations to cis-disubstituted gamma-lactams via the intermediacy of catalytically generated homoenolates. Critical to the success of this process was overcoming inhibition of the N-heterocyclic carbene catalyst by the electrophilic imines. The overall process proceeds with good(More)
Catalytic reactions promoted by N-heterocyclic carbenes (NHCs) have exploded in popularity since 2004 when several reports described new fundamental reactions that extended beyond the long-studied generation of acyl anion equivalents. These new NHC-catalyzed reactions allow chemists to generate unique reactive species from otherwise inert starting(More)