Jeffrey V. Siebers

Learn More
The Monte Carlo (MC) method has been shown through many research studies to calculate accurate dose distributions for clinical radiotherapy, particularly in heterogeneous patient tissues where the effects of electron transport cannot be accurately handled with conventional, deterministic dose algorithms. Despite its proven accuracy and the potential for(More)
The clinical use of respiratory-gated radiotherapy and the application of intensity-modulated radiotherapy (IMRT) are 2 relatively new innovations to the treatment of lung cancer. Respiratory gating can reduce the deleterious effects of intrafraction motion, and IMRT can concurrently increase tumor dose homogeneity and reduce dose to critical structures(More)
The effect of dose calculation accuracy during inverse treatment planning for intensity modulated radiotherapy (IMRT) was studied in this work. Three dose calculation methods were compared: Monte Carlo, superposition and pencil beam. These algorithms were used to calculate beamlets. which were subsequently used by a simulated annealing algorithm to(More)
Four-dimensional (4D) radiotherapy is the explicit inclusion of the temporal changes in anatomy during the imaging, planning, and delivery of radiotherapy. Temporal anatomic changes can occur for many reasons, though the focus of the current investigation is respiration motion for lung tumors. The aim of this study was to develop 4D radiotherapy(More)
Dose calculations for intensity modulated radiation therapy (IMRT) face new challenges due to the complex leaf geometry and time dependent nature of the delivery. A fast method of particle transport through a dynamic multileaf collimator (MLC) geometry that accounts for photon attenuation and first-scattered Compton photon production has been incorporated(More)
This study develops and tests a method to compute dosimetric images for an amorphous silicon (a-Si) flat-panel detector so that an accurate quantitative comparison between measured and computed portal images may be made. An EGS4-based Monte Carlo (MC) algorithm is developed to efficiently tally the energy deposition through the use of a virtual detector(More)
Four-dimensional (4D) radiotherapy delivery to dynamically moving tumors requires a real-time signal of the tumor position as a function of time so that the radiation beam can continuously track the tumor during the respiration cycle. The aim of this study was to develop and evaluate an electronic portal imaging device (EPID)-based marker-tracking system(More)
This paper presents a new concept to automatically detect the neighborhood in an image where deformable registration is mis-performing. Specifically, the displacement vector field (DVF) from a deformable image registration is substituted into a finite-element-based elastic framework to calculate unbalanced energy in each element. The value of the derived(More)
The purpose of this work is to examine the potential impact of the frequency and amplitude of fluctuations ("complexity") in intensity distributions on intensity-modulated radiotherapy (IMRT) dose distributions. The intensity-modulated beams are efficiently delivered using a multileaf collimator (MLC). Radiation may be delivered through a continuous(More)
The aim of this work was to investigate the accuracy of dose predicted by a Batho power law correction, and two models which account for electron range: A superposition/convolution algorithm and a Monte Carlo algorithm. The results of these models were compared in phantoms with cavities and low-density inhomogeneities. An idealized geometry was considered(More)