Jeffrey T. Rahn

Learn More
In this paper, the current state of the art for large-scale InP photonic integrated circuits (PICs) is reviewed with a focus on the devices and technologies that are driving the commercial scaling of highly integrated devices. Specifically, the performance, reliability, and manufacturability of commercial 100-Gb/s dense wavelength-division-multiplexed(More)
We present real-time polarization mode dispersion (PMD) tolerance measurement results with a commercially available 500 Gb/s coherent modem. The first- and second-order PMD space is explored, showing that peak values of 500 ps of static, first-order PMD (differential group delay) have small penalties. The system was stressed using fast scrambling, with(More)
We demonstrate a fully integrated multi-channel InP-based coherent transmitter photonic integrated circuits (PICs) with extended C-band tunability, operating at 33 and 44 Gbaud per channel under 16-QAM dual-polarization modulation. PICs are demonstrated integrating up to 14-channels enabling multi-Tb/s total PIC capacities.
We demonstrate a 10 wavelength, 200 GHz spaced, monolithically integrated, polarization-multiplexed, InP differential quadrature phase shift keying receiver operating at 45.6 Gb/s per wavelength. The receiver is based on a novel technique for polarization demodulation and phase tracking that does not require any external components.