Learn More
The Community Climate System Model version 3 (CCSM3) has recently been developed and released to the climate community. CCSM3 is a coupled climate model with components representing the atmosphere, ocean, sea ice, and land surface connected by a flux coupler. CCSM3 is designed to produce realistic simulations over a wide range of spatial resolutions,(More)
Human activities are releasing tiny particles (aerosols) into the atmosphere. These human-made aerosols enhance scattering and absorption of solar radiation. They also produce brighter clouds that are less efficient at releasing precipitation. These in turn lead to large reductions in the amount of solar irradiance reaching Earth's surface, a corresponding(More)
The Community Climate System Model, version 2 (CCSM2) is briefly described. A 1000-yr control simulation of the present day climate has been completed without flux adjustments. Minor modifications were made at year 350, which included all five components using the same physical constants. There are very small trends in the upper-ocean, sea ice, atmosphere,(More)
Calculations of the effects of both natural and anthropogenic tropospheric sulfate aerosols indicate that the aerosol climate forcing is sufficiently large in a number of regions of the Northern Hemisphere to reduce significantly the positive forcing from increased greenhouse gases. Summer sulfate aerosol forcing in the Northern Hemisphere completely(More)
A new version of the Community Climate System Model (CCSM) has been developed and released to the climate community. CCSM3 is a coupled climate model with components representing the atmosphere, ocean, sea ice, and land surface connected by a flux coupler. CCSM3 is designed to produce realistic simulations over a wide range of spatial resolutions, enabling(More)
The climate sensitivity of the Community Climate System Model (CCSM) is described in terms of the equilibrium change in surface temperature due to a doubling of carbon dioxide in a slab ocean version of the Community Atmosphere Model (CAM) and the transient climate response, which is the surface temperature change at the point of doubling of carbon dioxide(More)
It is widely assumed that variations in Earth's radiative energy budget at large time and space scales are small. We present new evidence from a compilation of over two decades of accurate satellite data that the top-of-atmosphere (TOA) tropical radiative energy budget is much more dynamic and variable than previously thought. Results indicate that the(More)