Learn More
This paper is a study of the behavioral and spatial firing correlates of neurons in the rat postsubiculum. Recordings were made from postsubicular neurons as rats moved freely throughout a cylindrical chamber, where the major cue for orientation was a white card taped to the inside wall. An automatic video/computer system monitored cell discharge while(More)
The discharge characteristics of postsubicular head-direction cells in a fixed environment were described in the previous paper (Taube et al., 1990). This paper reports changes in the firing properties of head-direction cells following changes in the animal's environment. Head-direction cells were recorded from rats as they moved freely in a 76-cm-diameter(More)
Previous studies have identified neurons in the postsubiculum which discharge as a function of the animal's head direction in the horizontal plane, independent of its behavior and location in the environment. Anatomical studies have shown that the postsubiculum contains reciprocal connections with the anterior thalamic nuclei (ATN). In order to determine(More)
Animals require two types of fundamental information for accurate navigation: location and directional heading. Current theories hypothesize that animals maintain a neural representation, or cognitive map, of external space in the brain. Whereas cells in the rat hippocampus and parahippocampal regions encode information about location, a second type of(More)
Navigation first requires accurate perception of one's spatial orientation within the environment, which consists of knowledge about location and directional heading. Cells within several limbic system areas of the mammalian brain discharge allocentrically as a function of the animal's directional heading, independent of the animal's location and ongoing(More)
Many neurons in the rat anterodorsal thalamus (ADN) and postsubiculum (PoS) fire selectively when the rat points its head in a specific direction in the horizontal plane, independent of the animal's location and ongoing behavior. The lateral mammillary nuclei (LMN) are interconnected with both the ADN and PoS and, therefore, are in a pivotal position to(More)
Single cells in the rat anterior thalamic nucleus (ATN) and postsubiculum (PoS) discharge as a function of the rat's directional heading in the horizontal plane, independent of its location. A previous study that compared cell firing during clockwise and counterclockwise head turns concluded that ATN 'head direction' (HD) cell discharge anticipates the(More)
Many neurons in the rat lateral mammillary nuclei (LMN) fire selectively in relation to the animal's head direction (HD) in the horizontal plane independent of the rat's location or behavior. One hypothesis of how this representation is generated and updated is via subcortical projections from the dorsal tegmental nucleus (DTN). Here we report the type of(More)
Vestibular information influences spatial orientation and navigation in laboratory animals and humans. Neurons within the rat anterior thalamus encode the directional heading of the animal in absolute space. These neurons, referred to as head direction (HD) cells, fire selectively when the rat points its head in a specific direction in the horizontal plane(More)
Previous research has identified neurons in the postsubiculum (PoS) and anterior dorsal thalamic nucleus (AD) of the rat that discharge as a function of the animal's head direction. In addition, anatomical studies have shown that the AD and PoS are reciprocally connected with one another. The current study examined whether head direction (HD) cells in each(More)