Learn More
Navigation first requires accurate perception of one's spatial orientation within the environment, which consists of knowledge about location and directional heading. Cells within several limbic system areas of the mammalian brain discharge allocentrically as a function of the animal's directional heading, independent of the animal's location and ongoing(More)
The hippocampal formation is essential for forming declarative representations of the relationships among multiple stimuli. The rodent hippocampal formation, including the entorhinal cortex and subicular complex, is critical for spatial memory. Two classes of hippocampal neurons fire in relation to spatial features. Place cells collectively map spatial(More)
Many neurons throughout the rat limbic system discharge in relation to the animal's directional heading with respect to its environment. These so-called head direction (HD) cells exhibit characteristics of persistent neural activity. This article summarizes where HD cells are found, their major properties, and some of the important experiments that have(More)
The occurrence of cells that encode spatial location (place cells) or head direction (HD cells) in the rat limbic system suggests that these cell types are important for spatial navigation. We sought to determine whether place fields of hippocampal CA1 place cells would be altered in animals receiving lesions of brain areas containing HD cells. Rats(More)
Previous research has identified neurons in the postsubiculum (PoS) and anterior dorsal thalamic nucleus (AD) of the rat that discharge as a function of the animal's head direction. In addition , anatomical studies have shown that the AD and PoS are reciprocally connected with one another. The current study examined whether head direction (HD) cells in each(More)
The retrosplenial cortex (RSP), a brain region frequently linked to processes of spatial navigation, contains neurons that discharge as a function of a rat's head direction (HD). HD cells have been identified throughout the limbic system including the anterodorsal thalamus (ADN) and postsubiculum (PoS), both of which are reciprocally connected to the RSP.(More)
Vestibular information is an important factor in maintaining accurate spatial awareness. Yet, each of the cortical areas involved in processing vestibular information has unique functionality. Further, the anatomical pathways that provide vestibular input for cognitive processes are also distinct. This review outlines some of the current understanding of(More)
Head direction (HD) cells in the rodent limbic system are believed to correspond to a cognitive representation of directional heading in the environment. Lesions of vestibular hair cells disrupt the characteristic firing patterns of HD cells, and thus vestibular afference is a critical contributor to the HD signal. A subcortical pathway that may convey this(More)
The head direction (HD) cell signal is a representation of an animal's perceived directional heading with respect to its environment. This signal appears to originate in the vestibular system, which includes the semicircular canals and otolith organs. Preliminary studies indicate the semicircular canals provide a necessary component of the HD signal, but(More)
Head direction (HD) cells in the rat anterodorsal thalamic nucleus (ADN) fire relative to the animal's directional heading. Lesions of the entire vestibular labyrinth have been shown to severely alter VIIIth nerve input and disrupt these HD signals. To assess the specific contributions of the semicircular canals without altering tonic VIIIth nerve input,(More)