Jeffrey S. Stevenson

Learn More
Two synchronization protocols were tested for lactating dairy cows and heifers. Nulliparous dairy heifers (13 to 23 mo; n = 155) and primiparous and multiparous dairy cows (60 to 289 d postpartum; n = 310) were assigned randomly to two treatments. Controls received 25 mg of PGF2 alpha and were artificially inseminated according to the a.m.-p.m. rule(More)
Four experiment stations (IL, KS, MN, and MO) conducted experiments to determine effects of introducing a CIDR (controlled internal device release) into an ovulation control program for postpartum suckled beef cows. Five hundred sixty cows were assigned randomly to two treatments: 1) 100 microg of GnRH (i.m.) followed in 7 d with 25 mg of PGF2alpha,(More)
Two experiments examined pregnancy after synchronized ovulation (Ovsynch) with or without progesterone (P4) administered via controlled internal drug release (CIDR) intravaginal inserts. In experiment 1, 262 lactating cows in one herd were in 3 treatments: Ovsynch (n = 91), Ovsynch + CIDR (n = 91), and control (n = 80). The Ovsynch protocol included(More)
Our objective was to determine the effect of exogenous progesterone (P4) during a timed artificial insemination (TAI) protocol on pregnancies per AI (P/AI) in dairy cows not previously detected in estrus. Lactating cows (n=3,248) from 7 commercial dairy herds were submitted to a presynchronization protocol (2 injections of PGF(2alpha) 14 d apart; Presynch),(More)
Our objective was to determine whether progesterone (P4) supplementation during an Ovsynch protocol would enhance fertility in lactating dairy cows. Lactating dairy cows (n = 634) at 6 locations were assigned randomly within lactation number and stage of lactation to receive the Ovsynch protocol [OVS; synchronization of ovulation by injecting GnRH 7 d(More)
We evaluated whether a fixed-time AI (TAI) protocol could yield pregnancy rates similar to a protocol requiring detection of estrus, or detection of estrus and AI plus a clean-up TAI for heifers not detected in estrus, and whether adding an injection of GnRH at controlled internal drug release (CIDR) insertion would enhance fertility in CIDR-based(More)
We hypothesized that increasing concentrations of progesterone (P4) after artificial insemination would increase fertility. Our objective was to assess changes in ovarian structures, incidence of ovulation, and change in serum P4 in response to GnRH, human chorionic gonadotropin (hCG), or exogenous P4 (controlled internal drug release; CIDR insert)(More)
In experiment 1, 705 cows were assigned to three treatments: 1) the Ovsynch protocol (a GnRH injection given 7 d before and another 48 h after one PGF2alpha injection); 2) PGF2alpha + Ovsynch (one PGF2alpha injection given 12 d (d -22) before initiating Ovsynch (d -10); and 3) 2xPG12 (two PGF2alpha injections 12 d apart; d -15 and -3, followed 48 h later by(More)
Our objective was to determine if a timed artificial insemination (AI) protocol (Ovsynch) might produce greater pregnancy rates than AI after a synchronized, detected estrus during summer. Lactating Holstein cows (n = 425) were grouped into breeding clusters and then assigned randomly to each of two protocols for AI between 50 and 70 days in milk. All cows(More)
In Experiment 1, 308 Holstein cows were assigned randomly to four treatments: 1) GnRH injection followed in 7 d by PGF2 alpha injection, then another GnRH injection 33 h later, and artificial insemination (AI) 16 to 18 h after the second GnRH injection; 2) GnRH injection followed in 7 d by PGF2 alpha injection and AI only after detected estrus; 3)(More)