Jeffrey R. Patton

Learn More
Nuclear receptors (NRs) induce transcription through association with coactivator complexes. We identified a pseudouridine synthase (PUS), mPus1p, as a coactivator for retinoic acid receptor (mRAR)gamma and other NR-dependent transactivation. mPus1p is a member of the truA subfamily of PUSs, a class of enzymes that isomerize uridine to pseudouridine in(More)
It was previously shown that mouse Pus1p (mPus1p), a pseudouridine synthase (PUS) known to modify certain transfer RNAs (tRNAs), can also bind with nuclear receptors (NRs) and function as a coactivator through pseudouridylation and likely activation of an RNA coactivator called steroid receptor RNA activator (SRA). Use of cell extract devoid of human Pus1p(More)
The specific and dynamic RNA:RNA interactions between pre-mRNA and small nuclear RNAs (snRNAs), especially U2, U5, and U6 snRNAs, form the catalytic core and are at the heart of the spliceosome formation. The functionally important regions in the snRNAs correspond to the highly modified regions in snRNAs from human, rat, and plant cells. To better(More)
A cDNA encoding mouse pseudouridine synthase 3 (mPus3p) has been cloned. The predicted protein has 34% identity with yeast pseudouridine synthase 3 (Pus3), an enzyme known to form pseudouridine at positions 38 and 39 in yeast tRNA. The cDNA is 1.7 kb, and when used as a probe on a Northern blot of total RNA from mouse tissues or cells in culture, a band at(More)
An in vitro assembly/modification system was used to study the effect of 5-fluorouridine (5-FU) incorporation on the biosynthesis of the U2 small nuclear ribonucleoprotein particle (U2 snRNP). Labeled U2 RNAs were transcribed in vitro with 5-fluoro-UTP either partially supplementing or completely replacing UTP during synthesis. The resulting U2 RNAs have(More)
A missense mutation in the PUS1 gene affecting a highly conserved amino acid has been associated with mitochondrial myopathy and sideroblastic anemia (MLASA), a rare autosomal recessive oxidative phosphorylation disorder. The PUS1 gene encodes the enzyme pseudouridine synthase 1 (Pus1p) that is known to pseudouridylate tRNAs in other species. Total RNA was(More)
Incubation of a SP6-transcribed human U2 RNA precursor molecule in a HeLa cell S100 fraction resulted in the formation of ribonucleoprotein complexes. In the presence of ATP, the particles that assembled had several properties of native U2 snRNP, including resistance to dissociation in Cs2SO4 gradients, their buoyant density, and pattern of digestion by(More)
The U1 small nuclear ribonucleoprotein particle (U1 snRNP), a cofactor in pre-mRNA splicing, contains three proteins, termed 70K, A, and C, that are not present in the other spliceosome-associated snRNPs. We studied the binding of the A and C proteins to U1 RNA, using a U1 snRNP reconstitution system and an antibody-induced nuclease protection technique.(More)
Although the U1 small nuclear ribonucleoprotein particle (snRNP) was the first mRNA-splicing cofactor to be identified, the manner in which it functions in splicing is not precisely understood. Among the information required to understand how U1 snRNP participates in splicing, it will be necessary to know its structure. Here we describe the in vitro(More)
The 15s globin mRNA-protein complex (mRNP) was isolated from chicken reticulocyte polyribosomes dissociated in EDTA. To determine protein binding sites, the mRNP was treated with micrococcal nuclease and the nuclease resistant RNA was mapped to the beta globin gene at the nucleotide level. As far as we can determine there is no bound protein from the Cap(More)