Learn More
Determining the effect of gene deletion is a fundamental approach to understanding gene function. Conventional genetic screens exhibit biases, and genes contributing to a phenotype are often missed. We systematically constructed a nearly complete collection of gene-deletion mutants (96% of annotated open reading frames, or ORFs) of the yeast Saccharomyces(More)
To study fidelity of RNA polymerase II (Pol II), we analyzed properties of the 6-azauracil-sensitive and TFIIS-dependent E1103G mutant of rbp1 (rpo21), the gene encoding the catalytic subunit of Pol II in Saccharomyces cerevisiae. Using an in vivo retrotransposition-based transcription fidelity assay, we observed that rpb1-E1103G causes a 3-fold increase in(More)
Cells have high-fidelity polymerases whose task is to accurately replicate the genome, and low-fidelity polymerases with specialized functions. Although some of these low-fidelity polymerases are exceptional in their ability to replicate damaged DNA and restore the undamaged sequence, they are error prone on undamaged DNA. In fact, these error-prone(More)
Mutations accumulate during all stages of growth, but only germ line mutations contribute to evolution. While meiosis contributes to evolution by reassortment of parental alleles, we show here that the process itself is inherently mutagenic. We have previously shown that the DNA synthesis associated with repair of a double-strand break is about 1000-fold(More)
We developed a highly sensitive assay to detect transcription errors in vivo. The assay is based on suppression of a missense mutation in the active site tyrosine in the Cre recombinase. Because Cre acts as tetramer, background from translation errors are negligible. Functional Cre resulting from rare transcription errors that restore the tyrosine codon can(More)
Closely spaced long inverted repeats, also known as DNA palindromes, can undergo intrastrand annealing to form DNA hairpins. The ability to form these hairpins results in genome instability, difficulties in maintaining clones in Escherichia coli and major problems for most DNA sequencing approaches. Because of their role in genomic instability and gene(More)
The nature of any long palindrome that might exist in the human genome is obscured by the instability of such sequences once cloned in Escherichia coli. We describe and validate a practical alternative to the analysis of naturally-occurring palindromes based upon cloning and propagation in Saccharomyces cerevisiae. With this approach we have investigated an(More)
  • 1