Learn More
Using genome-wide data from 253,288 individuals, we identified 697 variants at genome-wide significance that together explained one-fifth of the heritability for adult height. By testing different numbers of variants in independent studies, we show that the most strongly associated ∼2,000, ∼3,700 and ∼9,500 SNPs explained ∼21%, ∼24% and ∼29% of phenotypic(More)
We hypothesized that estradiol levels are higher in prepubertal girls than in prepubertal boys and that this greater secretion of estradiol might drive the more rapid epiphyseal development and earlier puberty in girls. Since previous estradiol assays have lacked adequate sensitivity to test the hypothesis of higher estradiol levels in girls, we developed a(More)
Longitudinal bone growth occurs at the growth plate by endochondral ossification. Within the growth plate, chondrocyte proliferation, hypertrophy, and cartilage matrix secretion result in chondrogenesis. The newly formed cartilage is invaded by blood vessels and bone cells that remodel the newly formed cartilage into bone tissue. This process of(More)
Body growth is rapid in infancy but subsequently slows and eventually ceases due to a progressive decline in cell proliferation that occurs simultaneously in multiple organs. We previously showed that this decline in proliferation is driven in part by postnatal down-regulation of a large set of growth-promoting genes in multiple organs. We hypothesized that(More)
Estrogen is critical for epiphyseal fusion in both young men and women. In this study, we explored the cellular mechanisms by which estrogen causes this phenomenon. Juvenile ovariectomized female rabbits received either 70 microg/kg estradiol cypionate or vehicle i.m. once a week. Growth plates from the proximal tibia, distal tibia, and distal femur were(More)
GH is often used to treat children with idiopathic short stature despite the lack of definitive, long-term studies of efficacy. We performed a randomized, double-blind, placebo-controlled trial to determine the effect of GH on adult height in peripubertal children. Subjects (n = 68; 53 males and 15 females), 9-16 yr old, with marked, idiopathic short(More)
In the past, the growth hormone (GH)-insulin-like growth factor 1 (IGF-1) axis was often considered to be the main system that regulated childhood growth and, therefore, determined short stature and tall stature. However, findings have now revealed that the GH-IGF-1 axis is just one of many regulatory systems that control chondrogenesis in the growth plate,(More)
C-type natriuretic peptide (CNP) and its high affinity receptor-B are expressed in fetal bones. Here we show that CNP accelerates longitudinal growth of fetal rat metatarsal bones in organ culture by several mechanisms. First, CNP stimulates chondrocyte proliferation in the proliferative zone as assessed by [3H]thymidine incorporation. Second, CNP(More)
In mammals, release from growth-inhibiting conditions results in catch-up growth. To explain this phenomenon, we proposed the following model: 1) The normal senescent decline in growth plate function depends not on age per se, but on the cumulative number of replications that growth plate chondrocytes have undergone. 2) Conditions that suppress growth plate(More)
With age, the growth plate undergoes senescent changes that cause linear bone growth to slow and finally cease. Based on previous indirect evidence, we hypothesized that this senescent decline occurs because growth plate stem-like cells, located in the resting zone, have a finite proliferative capacity that is gradually depleted. Consistent with this(More)