Jeffrey L. Staudinger

Learn More
The pregnane X receptor (PXR) is the molecular target for catatoxic steroids such as pregnenolone 16alpha-carbonitrile (PCN), which induce cytochrome P450 3A (CYP3A) expression and protect the body from harmful chemicals. In this study, we demonstrate that PXR is activated by the toxic bile acid lithocholic acid (LCA) and its 3-keto metabolite. Furthermore,(More)
PICK1 is a protein kinase C (PKC) alpha-binding protein initially identified using the yeast two-hybrid system. Here we report that PICK1 contains a PDZ domain that interacts specifically with a previously unidentified PDZ-binding domain (QSAV) at the extreme COOH terminus of PKCalpha and that mutation of a putative carboxylate-binding loop within the PICK1(More)
Protein kinase C (PKC) plays a central role in the control of proliferation and differentiation of a wide range of cell types by mediating the signal transduction response to hormones and growth factors. Upon activation by diacylglycerol, PKC translocates to different subcellular sites where it phosphorylates numerous proteins, most of which are(More)
Identification and characterization of the pregnane X receptor (PXR) as a key regulator of cytochrome P450 3A (CYP3A) gene expression has led to an increased understanding of the molecular basis of many drug-drug interactions. Mice lacking PXR (PXR-KO) were used in the present study to delineate the role of PXR in regulating hepatomegaly and regulating the(More)
Individual variation in drug metabolism is a major cause of unpredictable side effects during therapy. Drug metabolism is controlled by a class of orphan nuclear receptors (NRs), which regulate expression of genes such as CYP (cytochrome)3A4 and MDR-1 (multi-drug resistance-1), that are involved in this process. We have found that xenobiotic-mediated(More)
PURPOSE Variations in biotransformation and elimination of microtubule-binding drugs are a major cause of unpredictable side effects during cancer therapy. Because the orphan receptor, pregnenolone X-receptor (PXR), coordinately regulates the expression of paclitaxel metabolizing and transport enzymes, controlling this process could improve therapeutic(More)
Little is known about differential expression, functions, regulation, and targeting of "atypical" protein kinase C (aPKC) isoenzymes in vivo. We have cloned and characterized a novel cDNA that encodes a Caenorhabditis elegans aPKC (PKC3) composed of 597 amino acids. In post-embryonic animals, a 647-base pair segment of promoter/enhancer DNA directs(More)
We report that CYP3a13 gene, located on mouse chromosome 5, spans 27.5 Kb and contains 13 exons. The transcription start site is 35 bp upstream of the coding region and results in a 109 bp 5' untranslated region. CYP3a13 promoter shows putative binding sites for retinoid X receptor, pregnane X receptor, and estrogen receptor. CYP3a13 shows a broad tissue(More)
Thioacetamide (TA) is a well-known hepatotoxin in rats. Acute doses cause centrilobular necrosis and hyperbilirubinemia while chronic administration leads to biliary hyperplasia and cholangiocarcinoma. Its acute toxicity requires its oxidation to a stable S-oxide (TASO) that is oxidized further to a highly reactive S,S-dioxide (TASO(2)). To explore possible(More)
The CYP3As are broad-spectrum drug-metabolizing enzymes that are collectively responsible for more than 50% of xenobiotic metabolism. Unlike other CYP3As, murine CYP3A44 is expressed predominantly in the female liver, with much lower levels in male livers and no detectable expression in brain or kidney in either gender. In this study, we examined the role(More)