Jeffrey L. Evelhoch

Learn More
fMRI can objectively measure pain-related neural activities in humans and animals, providing a valuable tool for studying the mechanisms of nociception and for developing new analgesics. However, due to its extreme sensitivity to subject motion, pain fMRI studies are performed in animals that are immobilized, typically with anesthesia. Since anesthesia(More)
Buprenorphine (BUP) is a partial agonist at μ-, δ- and ORL1 (opioid receptor-like)/nociceptin receptors and antagonist at the κ-opioid receptor site. BUP is known to have both analgesic as well as antihyperalgesic effects via its central activity, and is used in the treatment of moderate to severe chronic pain conditions. Recently, it was shown that(More)
Pharmacological magnetic resonance imaging (phMRI) is one method by which a drug's pharmacodynamic effects in the brain can be assessed. Although phMRI has been frequently used in preclinical and clinical settings, the extent to which a phMRI signature for a compound translates between rodents and humans has not been systematically examined. In the current(More)
OBJECTIVE Quantitative magnetic resonance imaging (MRI) of articular cartilage represents a powerful tool in osteoarthritis (OA) research, but has so far been confined to a field strength of 1.5T. The aim of this study was to evaluate the precision of quantitative MRI assessments of human cartilage morphology at 3.0T and to correlate the measurements at(More)
This study aims to identify fMRI signatures of nociceptive processing in whole brain of anesthetized rats during noxious electrical stimulation (NES) and noxious mechanical stimulation (NMS) of paw. Activation patterns for NES were mapped with blood oxygen level dependent (BOLD) and cerebral blood volume (CBV) fMRI, respectively, to investigate the(More)
Substance P (SP) and neurokinin-1 receptors (NK-1R) are localized within central and peripheral sensory pain pathways. The roles of SP and NK-1R in pain processing, the anatomical distribution of NK-1R and efficacy observed in preclinical pain studies involving pain and sensory sensitization models, suggested that NK-1R antagonists (NK-1RAs) would relieve(More)
MRI-based cartilage morphometry was previously validated in the absence of gadopentate dimeglumine (Gd-DTPA). However, Gd-DTPA is required for compositional (proteoglycan) imaging using delayed gadolinium-enhanced MRI of cartilage (dGEMRIC). Therefore, the effect of Gd-DTPA on cartilage morphometry was studied. A total of 165 female participants (67 with(More)
Calcitonin gene-related peptide (CGRP) is a potent neuropeptide whose agonist interaction with the CGRP receptor (CGRP-R) in the periphery promotes vasodilation, neurogenic inflammation and trigeminovascular sensory activation. This process is implicated in the cause of migraine headaches, and CGRP-R antagonists in clinical development have proven effective(More)
Cerebral blood volume (CBV) fMRI with superparamagnetic iron oxide nanoparticles (USPIO) as contrast agent was used to investigate the odorant-induced olfaction in anesthetized rhesus monkeys. fMRI data were acquired in 24 axial slices covering the entire brain, with isoamyl-acetate as the odor stimulant. For each experiment, multiple fMRI measurements were(More)
BACKGROUND Pharmacological MRI (phMRI) is a neuroimaging technique where drug-induced hemodynamic responses can represent a pharmacodynamic biomarker to delineate underlying biological consequences of drug actions. In most preclinical studies, animals are anesthetized during image acquisition to minimize movement. However, it has been demonstrated(More)