Learn More
Magnetic resonance is an exceptionally powerful and versatile measurement technique. The basic structure of a magnetic resonance experiment has remained largely unchanged for almost 50 years, being mainly restricted to the qualitative probing of only a limited set of the properties that can in principle be accessed by this technique. Here we introduce an(More)
PURPOSE To determine whether consistent regions of activity could be observed in the lumbar spinal cord of single subjects with spin-echo functional MRI (fMRI) if several repeated experiments were performed within a single imaging session. MATERIALS AND METHODS Repeated fMRI experiments of the human lumbar spinal cord were performed at 1.5 T with a(More)
In this study, we registered live-time interventional magnetic resonance imaging (iMRI) slices with a previously obtained high-resolution MRI volume that in turn can be registered with a variety of functional images, e.g., PET, SPECT, for tumor targeting. We created and evaluated a slice-to-volume (SV) registration algorithm with special features for its(More)
PURPOSE To evaluate an augmented reality (AR) system in combination with a 1.5-T closed-bore magnetic resonance (MR) imager as a navigation tool for needle biopsies. MATERIALS AND METHODS The experimental protocol had institutional animal care and use committee approval. Seventy biopsies were performed in phantoms by using 20 tube targets, each with a(More)
Look-up tables (LUTs) are a common method for increasing the speed of many algorithms. Their use can be extended to the reconstruction of nonuniformly sampled k-space data using either a discrete Fourier transform (DFT) algorithm or a convolution-based gridding algorithm. A table for the DFT would be precalculated arrays of weights describing how each data(More)
We are investigating interventional MRI (iMRI) guided thermal ablation treatment of the prostate cancer. Functional images such as SPECT can detect and localize tumor in the prostate not reliably seen in MRI. We intend to combine the advantages of SPECT with iMRI-guided treatments. Our concept is to first register the low-resolution SPECT with a high(More)
Spiral, radial, and other nonrectilinear k-space trajectories are an area of active research in MRI due largely to their typically rapid acquisition times and benign artifact patterns. Trajectory design has commonly proceeded from a description of a simple shape to an investigation of its properties, because there is no general theory for the derivation of(More)
This work describes a newly developed magnetic resonance imaging (MRI) data-acquisition strategy which replaces the standard Fourier phase-encoding with the spatially localized coefficients of wavelet-encoding and offers a new technique for image guidance when combined with a dynamic tracking algorithm. By using this new technique, only a specific fraction(More)