Learn More
Magnetic resonance is an exceptionally powerful and versatile measurement technique. The basic structure of a magnetic resonance experiment has remained largely unchanged for almost 50 years, being mainly restricted to the qualitative probing of only a limited set of the properties that can in principle be accessed by this technique. Here we introduce an(More)
PURPOSE To evaluate an augmented reality (AR) system in combination with a 1.5-T closed-bore magnetic resonance (MR) imager as a navigation tool for needle biopsies. MATERIALS AND METHODS The experimental protocol had institutional animal care and use committee approval. Seventy biopsies were performed in phantoms by using 20 tube targets, each with a(More)
OBJECTIVE The purpose of this study was to determine the feasibility of and the appropriate technique for performance of MR imaging-guided arthrography of the shoulder. SUBJECTS AND METHODS Thirty-eight MR imaging-guided glenohumeral joint punctures were performed using an open C-arm scanner with a vertically oriented magnetic field, adapted for(More)
We evaluated semiautomatic, voxel-based registration methods for a new application, the assessment and optimization of interventional magnetic resonance imaging (I-MRI) guided thermal ablation of liver cancer. The abdominal images acquired on a low-field-strength, open I-MRI system contain noise, motion artifacts, and tissue deformation. Dissimilar images(More)
In this study, we registered live-time interventional magnetic resonance imaging (iMRI) slices with a previously obtained high-resolution MRI volume that in turn can be registered with a variety of functional images, e.g., PET, SPECT, for tumor targeting. We created and evaluated a slice-to-volume (SV) registration algorithm with special features for its(More)
We are investigating interventional MRI (iMRI) guided thermal ablation treatment of the prostate cancer. Functional images such as SPECT can detect and localize tumor in the prostate not reliably seen in MRI. We intend to combine the advantages of SPECT with iMRI-guided treatments. Our concept is to first register the low-resolution SPECT with a high(More)
The goal of this research is to register real-time interventional magnetic resonance imaging (iMRI) slice images with a previously obtained high-resolution MRI image volume, which in turn can be registered with functional images such as those from SPECT. The immediate application is in iMRI-guided treatment of prostate cancer, where additional images are(More)
Rapid T(2) weighted (T(2)W) images would facilitate physicians being able to distinguish normal tissues, vessels, tumors, and thermal lesions from therapeutic devices throughout interventional MRI procedures commonly performed in open low-field scanners (e.g., 0.2 T). Conventional diagnostic MRI techniques have not been successful at low-field strength for(More)
We investigated the feasibility of using echo-shifted fast low-angle shot (FLASH) for temperature-monitored thermo-therapeutic procedures in a 0.2 T interventional magnetic resonance (MR) scanner. Based on the proton resonance frequency shift technique, modified echo-shifted FLASH has sufficiently high signal-to-noise ratio to provide accurate temperature(More)