Jeffrey Koch

Learn More
The time-dependent gradient structure of a laser-compressed, high-energy-density plasma has been determined using a method based on the simultaneous analysis of time-resolved x-ray monochromatic images and x-ray line spectra from Ar-doped D2 implosion cores. The analysis self-consistently determines the temperature and density gradients that yield the best(More)
We performed a direct side-by-side comparison of a Shack-Hartmann wave-front sensor and a phase-shifting interferometer for the purpose of characterizing large optics. An expansion telescope of our own design allowed us to measure the surface figure of a 400-mm-square mirror with both instruments simultaneously. The Shack-Hartmann sensor produced data that(More)
Multi-kilo-electron-volt x-ray microscopy will be an important laser-produced plasma diagnostic at future megajoule facilities such as the National Ignition Facility (NIF). However, laser energies and plasma characteristics imply that x-ray microscopy will be more challenging at NIF than at existing facilities. We use analytical estimates and numerical ray(More)
Measurements of x-ray-driven implosions with charged particles have resulted in the quantitative characterization of critical aspects of indirect-drive inertial fusion. Three types of spontaneous electric fields differing in strength by two orders of magnitude, the largest being nearly one-tenth of the Bohr field, were discovered with time-gated proton(More)
In our experiments, we irradiated solid CH targets with a 400 J, 5 ps, 3 x 10(19) W/cm(2) laser, and we used x-ray imaging and spectroscopic diagnostics to monitor the keV x-ray emission from thin Al or Au tracer layers buried within the targets. The experiments were designed to quantify the spatial distribution of the thermal electron temperature and(More)
Future implosion experiments at the national ignition facility (NIF) will endeavor to simultaneously measure electron and ion temperatures with temporal and spatial resolution in order to explore non-equilibrium temperature distributions and their relaxation toward equilibrium. In anticipation of these experiments, and with understanding of the constraints(More)
A 5 ps gated framing camera was demonstrated using the pulse-dilation of a drifting electron signal. The pulse-dilation is achieved by accelerating a photoelectron derived information pulse with a time varying potential [R. D. Prosser, J. Phys. E 9, 57 (1976)]. The temporal dependence of the accelerating potential causes a birth time dependent axial(More)
We describe a spectrograph for x-ray laser linewidth measurements in the range 100-220 A. The design employs a plane varied-line-spacing grating operating in the convergent light produced by imaging of the entrance slit with a concave spherical mirror. By the appropriate choice of the linear term in the grating-spacing variation, two separate wavelengths(More)
High-energy charged particles are being used to diagnose x-ray-driven implosions in inertial-confinement fusion. Recent measurements with vacuum hohlraums have resulted in quantitative characterization of important aspects of x-ray drive and capsule implosions. Comprehensive data obtained from spectrally-resolved, fusion-product self emission and time-gated(More)