Jeffrey K Conner

Learn More
How species evolve depends on the communities in which they are embedded. Here, we briefly review the ideas underlying concepts of diffuse coevolution, evolution, and selection. We discuss criteria to identify when evolution will be diffuse. We advocate a more explicitly trait-oriented approach to diffuse (co)evolution, and discuss how considering effects(More)
Plant traits that increase pollinator visitation should be under strong selection. However, few studies have demonstrated a causal link between natural variation in attractive traits and natural variation in visitation to whole plants. Here we examine the effects of flower number and size on visitation to wild radish by two taxa of pollinators over 3 years,(More)
Selection on three phenotypic traits was estimated in a natural population of a fungus beetle, Bolitotherus cornutus. Lifetime fitness of a group of males in this population was estimated, and partitioned into five components: lifespan, attendance at the mating area, number of females courted, number of copulations attempted, and number of females(More)
Adaptive phenotypic plasticity in chemical defense is thought to play a major role in plant-herbivore interactions. We investigated genetic variation for inducibility of defensive traits in wild radish plants and asked if the evolution of induction is constrained by costs of phenotypic plasticity. In a greenhouse experiment using paternal half-sibling(More)
We present an analysis of Raphanus raphanistrum and simulations illustrating the utility of directly estimating male phenotypic selection gradients using genetic markers. The method offers a much more refined characterization of selection than attempting to assign paternity to individual progeny. Our analysis of R. raphanistrum reveals selection on(More)
Genetic correlations among traits are important in evolution, as they can constrain evolutionary change or reflect past selection for combinations of traits. Constraints and integration depend on whether the correlations are caused by pleiotropy or linkage disequilibrium, but these genetic mechanisms underlying correlations remain largely unknown in natural(More)
The hypothesis that population density can affect sexual selection on male horn size was tested in a three-year study of a fungus beetle, Bolitotherus cornutus. Males of this species have horns that vary greatly in length. These horns are used in fights over females; longer-horned males win the majority of fights, regardless of population density. However,(More)
Measurements of the genetic variation and covariation underlying quantitative traits are crucial to our understanding of current evolutionary change and the mechanisms causing this evolution. This fact has spurred a large number of studies estimating heritabilities and genetic correlations in a variety of organisms. Most of these studies have been done in(More)